2,946 research outputs found

    Improving Quality Assurance in Multidisciplinary Engineering Environments with Semantic Technologies

    Get PDF
    In multidisciplinary engineering (MDE) projects, for example, automation systems or manufacturing systems, stakeholders from various disciplines, for example, electrics, mechanics and software, have to collaborate. In industry practice, engineers apply individual and highly specialized tools with strong limitation regarding defect detection in early engineering phases. Experts typically execute reviews with limited tool support which make engineering projects defective and risky. Semantic Web Technologies (SWTs) can help to bridge the gap between heterogeneous sources as foundation for efficient and effective defect detection. Main questions focus on (a) how to bridge gaps between loosely coupled tools and incompatible data models and (b) how SWTs can help to support efficient and effective defect detection in context of engineering process improvement. This chapter describes success-critical requirements for defect detection in MDE and shows how SWTs can provide the foundation for early and efficient defect detection with an adapted review approach. The proposed defect detection framework (DDF) suggests different levels of SWT contributions as a roadmap for engineering process improvement. Two selected industry-related real-life cases show different levels of SWT involvement. Although SWTs have been successfully applied in real-life use cases, SWT applications can be risky if applied without good understanding of success factors and limitations

    Bridge Inspection: Human Performance, Unmanned Aerial Systems and Automation

    Get PDF
    Unmanned aerial systems (UASs) have become of considerable private and commercial interest for a variety of jobs and entertainment in the past 10 years. This paper is a literature review of the state of practice for the United States bridge inspection programs and outlines how automated and unmanned bridge inspections can be made suitable for present and future needs. At its best, current technology limits UAS use to an assistive tool for the inspector to perform a bridge inspection faster, safer, and without traffic closure. The major challenges for UASs are satisfying restrictive Federal Aviation Administration regulations, control issues in a GPS-denied environment, pilot expenses and availability, time and cost allocated to tuning, maintenance, post-processing time, and acceptance of the collected data by bridge owners. Using UASs with self-navigation abilities and improving image-processing algorithms to provide results near real-time could revolutionize the bridge inspection industry by providing accurate, multi-use, autonomous three-dimensional models and damage identification

    Deep learning in automated ultrasonic NDE -- developments, axioms and opportunities

    Get PDF
    The analysis of ultrasonic NDE data has traditionally been addressed by a trained operator manually interpreting data with the support of rudimentary automation tools. Recently, many demonstrations of deep learning (DL) techniques that address individual NDE tasks (data pre-processing, defect detection, defect characterisation, and property measurement) have started to emerge in the research community. These methods have the potential to offer high flexibility, efficiency, and accuracy subject to the availability of sufficient training data. Moreover, they enable the automation of complex processes that span one or more NDE steps (e.g. detection, characterisation, and sizing). There is, however, a lack of consensus on the direction and requirements that these new methods should follow. These elements are critical to help achieve automation of ultrasonic NDE driven by artificial intelligence such that the research community, industry, and regulatory bodies embrace it. This paper reviews the state-of-the-art of autonomous ultrasonic NDE enabled by DL methodologies. The review is organised by the NDE tasks that are addressed by means of DL approaches. Key remaining challenges for each task are noted. Basic axiomatic principles for DL methods in NDE are identified based on the literature review, relevant international regulations, and current industrial needs. By placing DL methods in the context of general NDE automation levels, this paper aims to provide a roadmap for future research and development in the area.Comment: Accepted version to be published in NDT & E Internationa

    A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure

    Get PDF
    To ensure the safety and the serviceability of civil infrastructure it is essential to visually inspect and assess its physical and functional condition. This review paper presents the current state of practice of assessing the visual condition of vertical and horizontal civil infrastructure; in particular of reinforced concrete bridges, precast concrete tunnels, underground concrete pipes, and asphalt pavements. Since the rate of creation and deployment of computer vision methods for civil engineering applications has been exponentially increasing, the main part of the paper presents a comprehensive synthesis of the state of the art in computer vision based defect detection and condition assessment related to concrete and asphalt civil infrastructure. Finally, the current achievements and limitations of existing methods as well as open research challenges are outlined to assist both the civil engineering and the computer science research community in setting an agenda for future research

    A Systematic Literature Survey of Unmanned Aerial Vehicle Based Structural Health Monitoring

    Get PDF
    Unmanned Aerial Vehicles (UAVs) are being employed in a multitude of civil applications owing to their ease of use, low maintenance, affordability, high-mobility, and ability to hover. UAVs are being utilized for real-time monitoring of road traffic, providing wireless coverage, remote sensing, search and rescue operations, delivery of goods, security and surveillance, precision agriculture, and civil infrastructure inspection. They are the next big revolution in technology and civil infrastructure, and it is expected to dominate more than $45 billion market value. The thesis surveys the UAV assisted Structural Health Monitoring or SHM literature over the last decade and categorize UAVs based on their aerodynamics, payload, design of build, and its applications. Further, the thesis presents the payload product line to facilitate the SHM tasks, details the different applications of UAVs exploited in the last decade to support civil structures, and discusses the critical challenges faced in UASHM applications across various domains. Finally, the thesis presents two artificial neural network-based structural damage detection models and conducts a detailed performance evaluation on multiple platforms like edge computing and cloud computing

    Non-Contact Evaluation Methods for Infrastructure Condition Assessment

    Get PDF
    The United States infrastructure, e.g. roads and bridges, are in a critical condition. Inspection, monitoring, and maintenance of these infrastructure in the traditional manner can be expensive, dangerous, time-consuming, and tied to human judgment (the inspector). Non-contact methods can help overcoming these challenges. In this dissertation two aspects of non-contact methods are explored: inspections using unmanned aerial systems (UASs), and conditions assessment using image processing and machine learning techniques. This presents a set of investigations to determine a guideline for remote autonomous bridge inspections

    Infrastructure robotics: Research challenges and opportunities

    Full text link
    Infrastructure robotics is about research on and development of methodologies that enable robotic systems to be used in civil infrastructure inspection, maintenance and rehabilitation. This paper briefly discusses the current research challenges and opportunities in infrastructure robotics, and presents a review of the research activities and projects in this field at the Centre for Autonomous Systems, University of Technology Sydney
    • …
    corecore