557 research outputs found

    Multimodal music information processing and retrieval: survey and future challenges

    Full text link
    Towards improving the performance in various music information processing tasks, recent studies exploit different modalities able to capture diverse aspects of music. Such modalities include audio recordings, symbolic music scores, mid-level representations, motion, and gestural data, video recordings, editorial or cultural tags, lyrics and album cover arts. This paper critically reviews the various approaches adopted in Music Information Processing and Retrieval and highlights how multimodal algorithms can help Music Computing applications. First, we categorize the related literature based on the application they address. Subsequently, we analyze existing information fusion approaches, and we conclude with the set of challenges that Music Information Retrieval and Sound and Music Computing research communities should focus in the next years

    Dagstuhl News January - December 2001

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic

    From Visualization to Visually Enabled Reasoning

    Get PDF
    Interactive Visualization has been used to study scientific phenomena, analyze data, visualize information, and to explore large amounts of multi-variate data. It enables the human mind to gain novel insights by empowering the human visual system, encompassing the brain and the eyes, to discover properties that were previously unknown. While it is believed that the process of creating interactive visualizations is reasonably well understood, the process of stimulating and enabling human reasoning with the aid of interactive visualization tools is still a highly unexplored field. We hypothesize that visualizations make an impact if they successfully influence a thought process or a decision. Interacting with visualizations is part of this process. We present exemplary cases where visualization was successful in enabling human reasoning, and instances where the interaction with data helped in understanding the data and making a better informed decision. We suggest metrics that help in understanding the evolution of a decision making process. Such a metric would measure the efficiency of the reasoning process, rather than the performance of the visualization system or the user. We claim that the methodology of interactive visualization, which has been studied to a great extent, is now sufficiently mature, and we would like to provide some guidance regarding the evaluation of knowledge gain through visually enabled reasoning. It is our ambition to encourage the reader to take on the next step and move from information visualization to visually enabled reasoning

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Leveraging Evolutionary Changes for Software Process Quality

    Full text link
    Real-world software applications must constantly evolve to remain relevant. This evolution occurs when developing new applications or adapting existing ones to meet new requirements, make corrections, or incorporate future functionality. Traditional methods of software quality control involve software quality models and continuous code inspection tools. These measures focus on directly assessing the quality of the software. However, there is a strong correlation and causation between the quality of the development process and the resulting software product. Therefore, improving the development process indirectly improves the software product, too. To achieve this, effective learning from past processes is necessary, often embraced through post mortem organizational learning. While qualitative evaluation of large artifacts is common, smaller quantitative changes captured by application lifecycle management are often overlooked. In addition to software metrics, these smaller changes can reveal complex phenomena related to project culture and management. Leveraging these changes can help detect and address such complex issues. Software evolution was previously measured by the size of changes, but the lack of consensus on a reliable and versatile quantification method prevents its use as a dependable metric. Different size classifications fail to reliably describe the nature of evolution. While application lifecycle management data is rich, identifying which artifacts can model detrimental managerial practices remains uncertain. Approaches such as simulation modeling, discrete events simulation, or Bayesian networks have only limited ability to exploit continuous-time process models of such phenomena. Even worse, the accessibility and mechanistic insight into such gray- or black-box models are typically very low. To address these challenges, we suggest leveraging objectively [...]Comment: Ph.D. Thesis without appended papers, 102 page

    Concept and Workflow for 3D Visualization of Multifaceted Meteorological Data

    Get PDF
    The analysis of heterogeneous, complex data sets has become important in many scientific domains. With the help of scientific visualization, researchers can be supported in exploring their research results. One domain, where researchers have to deal with spatio-temporal data from different sources including simulation, observation and time-independent data, is meteorology. In this thesis, a concept and workflow for the 3D visualization of meteorological data was developed in cooperation with domain experts. Three case studies have been conducted based on the developed concept. In addition, the concept has been enhanced based on the experiences gained from the case studies. In contrast to existing all-in-one software applications, the proposed workflow employs a combination of existing software applications and their extensions to make a variety of already implemented visualization algorithms available. The workflow provides methods for data integration and for abstraction of the data as well as for generating representations of the variables of interest. Solutions for visualizing sets of variables, comparing results of multiple simulation runs and results of simulations based on different models are presented. The concept includes the presentation of the visualization scenes in virtual reality environments for a more comprehensible display of multifaceted data. To enable the user to navigate within the scenes, some interaction functionality was provided to control time, camera, and display of objects. The proposed methods have been selected with respect to the requirements defined in cooperation with the domain experts and have been verified with user tests. The developed visualization methods are used to analyze and present recent research results as well as for educational purposes. As the proposed approach uses generally applicable concepts, it can also be applied for the analysis of scientific data from other disciplines.In nahezu allen Wissenschaftsdisziplinen steigt der Umfang erhobener Daten. Diese sind oftmals heterogen und besitzen eine komplexe Struktur, was ihre Analyse zu einer Herausforderung macht. Die wissenschaftliche Visualisierung bietet hier Möglichkeiten, Wissenschaftler bei der Untersuchung ihrer Forschungsergebnisse zu unterstützen. Eine der Disziplinen, in denen räumlich-zeitliche Daten aus verschiedenen Quellen inklusive Simulations- und Observationsdaten eine Rolle spielen, ist die Meteorologie. In dieser Arbeit wurde in Zusammenarbeit mit Experten der Meteorologie ein Konzept und ein Workflow für die 3D-Visualisierung meteorologischer Daten entwickelt. Dabei wurden drei Fallstudien erarbeitet, die zum einen auf dem erstellten Konzept beruhen und zum anderen durch die während der Fallstudie gesammelten Erfahrungen das Konzept erweiterten. Der Workflow besteht aus einer Kombination existierender Software sowie Erweiterungen dieser. Damit wurden Funktionen zur Verfügung gestellt, die bei anderen Lösungsansätzen in diesem Bereich, die oft nur eine geringere Anzahl an Funktionalität bieten, nicht zur Verfügung stehen. Der Workflow beinhaltet Methoden zur Datenintegration sowie für die Abstraktion und Darstellung der Daten. Es wurden Lösungen für die Visualisierung einer Vielzahl an Variablen sowie zur vergleichenden Darstellung verschiedener Simulationsläufe und Simulationen verschiedener Modelle präsentiert. Die generierten Visualisierungsszenen wurden mit Hilfe von 3D-Geräten, beispielsweise eine Virtual-Reality-Umgebung, dargestellt. Die stereoskopische Projektion bietet dabei die Möglichkeit, diese komplexen Daten mit verbessertem räumlichem Eindruck darzustellen. Um dem Nutzer eine umfassende Analyse der Daten zu ermöglichen, wurden eine Reihe von Funktionen zur Interaktion zur Verfügung gestellt, um beispielsweise Zeit, Kamera und die Anzeige von 3D-Objekten zu steuern. Das Konzept und der Workflow wurden entsprechend der Anforderungen entwickelt, die zusammen mit Fachexperten definiert wurden. Des Weiteren wurden die Anwendungen in verschiedenen Entwicklungsstadien durch Nutzer getestet und deren Feedback in die Entwicklung einbezogen. Die Ergebnisse der Fallstudien wurden von den Wissenschaftlern benutzt, um ihre Daten zu analysieren, sowie diese zu präsentieren und in der Lehre einzusetzen. Da der vorgeschlagene Workflow allgemein anwendbare Konzepte beinhaltet, kann dieser auch für die Analyse wissenschaftlicher Daten anderer Disziplinen verwendet werden

    Maintenance Management Performance of Malaysian Palm Oil Mills

    Get PDF
    Performance of an organization should be appraised simultaneously, both in terms of its efficiency in resource utilization process and effectiveness in realizing the pre-determined goals. Measuring performance provides the required information to the management for effective decision making and is used by industries to assess progress against set goals and objectives in a quantifiable way. Deficient maintenance management can severely affect competitiveness of an organization by reducing throughput, increasing inventory, and leading to poor performance. Applying Overall Equipment Effectiveness, this research study, has evaluated maintenance management performance in Malaysian palm oil mills, highlighted how it helps to identify the factors causing poor performance and demonstrates how to improve and perpetuate company’s productivity, profits, and sustainability by adopting world class maintenance strategies such as Total Productive Maintenance. This research study supplicated data by mail survey questionnaire sent to all Malaysia palm oil mills, validated data through triangulation, and analyzed using descriptive statistics. The research exalts practitioner’s perspective and has determined that Scientific Management Theory axioms and Total Productive Maintenance principles are not being applied to optimize productivity in palm oil mills. The research also identified theory and practice gaps pertinent to maintenance management in palm oil mills and provided shop-level solutions to bridge those gaps. Research findings established how efficient and effective maintenance management offers, besides substantial cost savings, a wide scope of improvements for the palm oil industry. In order to ensure competitiveness and sustainability in the 21st century, it is obligatory for Malaysian palm oil mills to adopt best management practices in processing, manufacturing and maintenance

    LIPIcs, Volume 277, GIScience 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 277, GIScience 2023, Complete Volum

    Sixth Biennial Report : August 2001 - May 2003

    No full text
    • …
    corecore