1,873 research outputs found

    Towards a comprehensive assessment of interoception in a multi-dimensional framework

    Get PDF
    Interoception has historically been assessed using behavioural tests of accuracy, self-report measures or through the characterisation of neural signals underlying interoceptive processing. More recent conceptualisations of interoception incorporate interoceptive attention and higher-order measures related to the interpretation of interoceptive signals. At present, these interoceptive dimensions are largely assessed in isolation, yet this fails to capture the complexity of interoception. Comprehensive assessment across interoceptive dimensions can determine the full operation of general interoceptive function. Current work suggests that these interoceptive processes may be dissociable across dimensions and bodily axes, with differential mapping to cognitive and emotion processing. To characterise differences in interoceptive profiles, all interoceptive dimensions can be assessed within individuals, both within a single bodily axis (e.g., cardiac) or across bodily axes. Future work can better delineate how these interoceptive measures correspond to different types of processing. Comprehensive interoceptive assessment can help isolate selective interoceptive disruptions in different clinical conditions

    How do we relate to our heart? Neurobehavioral differences across three types of engagement with cardiac interoception

    Get PDF
    Standard measures of interoception are typically limited to the conscious perception of heartbeats. However, the fundamental purpose of interoceptive signaling, is to regulate the body. We present a novel biofeedback paradigm to explore the neurobehavioral consequences of three different types of engagement with cardiac interoception (Attend, Feel, Regulate) while participants perform a 'cardiac recognition' task. For both the Feel and Regulate conditions, participants displayed enhanced recognition of their own heartbeat, accompanied by larger heartbeat-evoked potentials (HEPs), suggesting that these approaches could be used interchangeably. Importantly, meta-cognitive interoceptive insight was highest in the Regulate condition, indicative of stronger engagement with interoceptive signals in addition to greater ecological validity. Only in the passive interoception condition (Feel) was a significant association found between accuracy in recognising one's own heartbeat and the amplitude of HEPs. Overall, our results imply that active conditions have an important role to play in future investigation of interoception.</p

    Confounding effects of heart rate, breathing rate, and frontal fNIRS on interoception

    Get PDF
    Recent studies have established that cardiac and respiratory phases can modulate perception and related neural dynamics. While heart rate and respiratory sinus arrhythmia possibly affect interoception biomarkers, such as heartbeat-evoked potentials, the relative changes in heart rate and cardiorespiratory dynamics in interoceptive processes have not yet been investigated. In this study, we investigated the variation in heart and breathing rates, as well as higher functional dynamics including cardiorespiratory correlation and frontal hemodynamics measured with fNIRS, during a heartbeat counting task. To further investigate the functional physiology linked to changes in vagal activity caused by specific breathing rates, we performed the heartbeat counting task together with a controlled breathing rate task. The results demonstrate that focusing on heartbeats decreases breathing and heart rates in comparison, which may be part of the physiological mechanisms related to “listening” to the heart, the focus of attention, and self-awareness. Focusing on heartbeats was also observed to increase frontal connectivity, supporting the role of frontal structures in the neural monitoring of visceral inputs. However, cardiorespiratory correlation is affected by both heartbeats counting and controlled breathing tasks. Based on these results, we concluded that variations in heart and breathing rates are confounding factors in the assessment of interoceptive abilities and relative fluctuations in breathing and heart rates should be considered to be a mode of covariate measurement of interoceptive processes

    From the inside out: Interoceptive feedback facilitates the integration of visceral signals for efficient sensory processing

    Get PDF
    Neuroscientific studies have mainly focused on the way humans perceive and interact with the external world. Recent work in the interoceptive domain indicates that the brain predictively models information from inside the body such as the heartbeat and that the efficiency with which this is executed can have implications for exteroceptive processing. However, to date direct evidence underpinning these hypotheses is lacking. Here, we show how the brain predictively refines neural resources to process afferent cardiac feedback and uses these interoceptive cues to enable more efficient processing of external sensory information. Participants completed a repetition-suppression paradigm consisting of a neutral repeating face. During the first face presentation, they heard auditory feedback of their heartbeat which either coincided with the systole of the cardiac cycle, the time at which cardiac events are registered by the brain or the diastole during which the brain receives no internal cardiac feedback. We used electroencephalography to measure the heartbeat evoked potential (HEP) as well as auditory (AEP) and visual evoked potentials (VEP). Exteroceptive cardiac feedback which coincided with the systole produced significantly higher HEP amplitudes relative to feedback timed to the diastole. Elevation of the HEP in this condition was followed by significant suppression of the VEP in response to the repeated neutral face and a stepwise decrease of AEP amplitude to repeated heartbeat feedback. Our results hereby show that exteroceptive heartbeat feedback coinciding with interoceptive signals at systole enhanced interoceptive cardiac processing. Furthermore, the same cue facilitating interoceptive integration enabled efficient suppression of a visual stimulus, as well as repetition suppression of the AEP across successive auditory heartbeat feedback. Our findings provide evidence that the alignment of external to internal signals can enhance the efficiency of interoceptive processing and that cues facilitating this process in either domain have beneficial effects for internal as well as external sensory processing

    Unbewusste Modulatoren der somatosensorischen Wahrnehmung

    Get PDF
    It is intriguing that perception of the same stimulus can vary profoundly from trial to trial. For example, it has been shown in many studies that weak, so-called “near-threshold stimuli” are sometimes consciously perceived and sometimes not. In my thesis, I have been investigating factors which underlie this profound perceptual variability in the somatosensory domain. Together with my colleagues, I performed three studies in which we tested three different types of presumed non-conscious modulators of somatosensory perception. In the first – behavioral - study, we investigated how the presence of subliminal noise during a peripheral somatosensory stimulation influences perception. Counter-intuitively, we found that peripheral noise can even improve perception of weak somatosensory stimuli. In our interpretation, this occurs most likely due to “stochastic resonance” effects (Study I: Iliopoulos et al. 2014). In the second – behavioral and EEG - study, we tested the effect of different forms of pulsed subliminal stimulation (single pulses versus pulse trains) on brain rhythms and somatosensory perception. Following-up on previous results of our group, we tested the hypothesis that subliminal pulsed stimulation impairs perception of subsequent stimuli via centrally enhanced Mu rhythm. Interestingly, the main result of this study was that trains of subliminal stimuli indeed inhibited subsequent somatosensory detection, however, - in contrast to our previous findings for single pulses – trains were associated with decreased Mu rhythm. We conclude that central rhythms most likely play a role in mediating the perceptual modulation of peripheral subliminal stimuli, however, the relationship is more complex than previously assumed (Study II: Iliopoulos et al. 2020). In the third study, we examined the influence of interoceptive signaling, especially from the heart, on somatosensory perception. The hypothesis was that the cardiac phase (systole versus diastole) and the so-called heart-evoked potential (HEP) would modulate somatosensory perception. Indeed, our study showed that somatosensory perception was better during diastole than during systole and detection performance declined as the amplitude of the HEP increased. Our interpretation of the former effect assumes that all events which occur simultaneously with the “pulse” are assumed by the brain to be pulse-synchronous peripheral noise and therefore suppressed. Our interpretation of the latter effect (HEP) assumes that HEP is a marker of the relative balance between interoception and exteroception (Study III: Al et al. 2020). In conclusion, in the studies which form the basis for my thesis, we have shown that somatosensory perception is modulated by peripheral effects (modes of peripheral stimulation, peripheral noise), central effects (Mu rhythm) and interoceptive signals from the heart. The precise interplay between these modulators is an exciting research topic for future studies.Interessanterweise kann die Wahrnehmung desselben Reizes von Augenblick zu Augenblick so stark variieren, dass dieser manchmal bewusst wahrgenommen wird und manchmal nicht. In meiner Dissertation habe ich Faktoren untersucht, die dieser Wahrnehmungsvariabilität im somatosensorischen (SS) System zugrunde liegen. Mit meinen Kollegen habe ich drei Studien durchgeführt, in denen wir verschiedene mutmaßlich unbewusste Modulatoren der SS-Wahrnehmung untersuchten. In der ersten Studie untersuchten wir, wie die Wahrnehmung peripherer SS-Reize durch unterschwelliges Rauschen beeinflusst wird. Wir konnten zeigen, dass peripheres Rauschen die Wahrnehmung schwacher Reize verbessert. Dies ist ein Hinweis auf das Vorliegen von "stochastischen Resonanzeffekten" (Studie I: Iliopoulos et al. 2014). In der zweiten Studie, die neben behavioralen Messungen auch elektroencephalographische (EEG) Messungen umfasste, testeten wir die Auswirkung verschiedener Formen gepulster unterschwelliger elektrischer Fingerstimulationen (Einzelpulse gegen Pulsserien) auf die Wahrnehmung und auf Hirn-rhythmen. Ausgehend von früheren Ergebnissen unserer Arbeitsgruppe überprüften wir, ob repetitive subliminale Stimulationen die Wahrnehmung nachfolgender Reize über einen zentral verstärkten Mu-Rhythmus beeinträchtigen. Das Ergebnis dieser Studie war, dass Serien unterschwelliger Reize tatsächlich die nachfolgende SS-Wahrnehmung hemmten, jedoch - im Gegensatz zu früheren Ergebnissen für Einzelimpulse – die Reizserien mit einem verringerten Mu-Rhythmus verbunden waren. Daraus schließen wir, dass zentrale Rhythmen höchstwahrscheinlich eine Rolle bei der Wahrnehmungsmodulation durch periphere unterschwellige Reize spielen, dass aber der Zusammenhang zwischen beiden komplexer ist als bisher vermutet (Studie II: Iliopoulos et al. 2020). In der dritten Studie untersuchten wir den Einfluss interozeptiver Signale aus dem Herzen auf die SS-Wahrnehmung. Die Hypothese war, dass die Herzphase und das so genannte Herz-evozierte Potenzial (HEP) die SS-Wahrnehmung modulieren. Wir zeigten, dass die SS-Wahrnehmung während der Diastole besser war als während der Systole und dass die Wahrnehmung in umgekehrtem Verhältnis zur Amplitude des vorausgehenden HEP stand. Für den ersten Effekt legen unsere Daten nahe, dass alle Ereignisse, die zusammen mit der Pulswelle auftreten, vom Gehirn als puls-synchrones peripheres Rauschen angenommen und daher unterdrückt werden. Der zweite Befund wird in Übereinstimmung mit der Literatur am besten dadurch erklärt, dass das HEP ein Marker für das relative Gleichgewicht zwischen Interozeption und Exterozeption darstellt (Studie III: Al et al. 2020). Zusammenfassend zeigen die Ergebnisse dieser Arbeit, wie die SS-Wahrnehmung durch periphere Effekte (Art der Stimulation, Rauschen), zentrale Effekte (Mu-Rhythmus) und interozeptive Signale des Herzens moduliert wird. Das genaue Zusammenspiel zwischen diesen Modulatoren ist ein spannendes Forschungsthema für zukünftige Studien

    Cortical monitoring of cardiac activity during rapid eye movement sleep: the heartbeat evoked potential in phasic and tonic rapid-eye-movement microstates

    Get PDF
    The project was supported by the Hungarian Scientific Research Fund (NKFI FK 128100 and K 128117) of the National Research, Development and Innovation Office, as well as by the Higher Education Institutional Excellence Program of the Ministry of Human Capacities in Hungary, within the framework of the Neurology thematic program of the Semmelweis University. This project has also received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska–Curie grant (agreement No. 801505). PP was supported by a project from the Spanish Ministry of Science, Innovation and Universities (PGC2018-096655-A-I00). The study was supported by ELTE Thematic Excellence Programme 2020 TKP2020-IKA-05 provided by National Research, Development and Innovation Office.Sleep is a fundamental physiological state that facilitates neural recovery during periods of attenuated sensory processing. On the other hand, mammalian sleep is also characterized by the interplay between periods of increased sleep depth and environmental alertness. Whereas the heterogeneity of microstates during non-rapid-eye-movement (NREM) sleep was extensively studied in the last decades, transient microstates during rapid-eye-movement (REM) sleep received less attention. REM sleep features two distinct microstates: phasic and tonic. Previous studies indicate that sensory processing is largely diminished during phasic REM periods, whereas environmental alertness is partially reinstated when the brain switches into tonic REM sleep. Here, we investigated interoceptive processing as quantified by the heartbeat evoked potential (HEP) during REM microstates. We contrasted the HEPs of phasic and tonic REM periods using two separate databases that included the nighttime polysomnographic recordings of healthy young individuals (N = 20 and N = 19). We find a differential HEP modulation of a late HEP component (after 500 ms post-R-peak) between tonic and phasic REM. Moreover, the late tonic HEP component resembled the HEP found in resting wakefulness. Our results indicate that interoception with respect to cardiac signals is not uniform across REM microstates, and suggest that interoceptive processing is partially reinstated during tonic REM periods. The analyses of the HEP during REM sleep may shed new light on the organization and putative function of REM microstates.Hungarian Scientific Research Fund (NKFI FK 128100 and K 128117)Higher Education Institutional Excellence Program of the Ministry of Human Capacities in HungaryEuropean Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska–Curie grant (agreement No. 801505)Spanish Ministry of Science, Innovation and Universities (PGC2018-096655-A-I00)ELTE Thematic Excellence Programme 2020 TKP2020-IKA-05 National Research, Development and Innovation Offic

    A multidimensional and multi-feature framework for cardiac interoception

    Get PDF
    Interoception (the sensing of inner-body signals) is a multi-faceted construct with major relevance for basic and clinical neuroscience research. However, the neurocognitive signatures of this domain (cutting across behavioral, electrophysiological, and fMRI connectivity levels) are rarely reported in convergent or systematic fashion. Additionally, various controversies in the field might reflect the caveats of standard interoceptive accuracy (IA) indexes, mainly based on heartbeat detection (HBD) tasks. Here we profit from a novel IA index (md) to provide a convergent multidimensional and multi-feature approach to cardiac interoception. We found that outcomes from our IA-md index are associated with –and predicted by– canonical markers of interoception, including the hd-EEG-derived heart-evoked potential (HEP), fMRI functional connectivity within interoceptive hubs (insular, somatosensory, and frontal networks), and socio-emotional skills. Importantly, these associations proved more robust than those involving current IA indexes. Furthermore, this pattern of results persisted when taking into consideration confounding variables (gender, age, years of education, and executive functioning). This work has relevant theoretical and clinical implications concerning the characterization of cardiac interoception and its assessment in heterogeneous samples, such as those composed of neuropsychiatric patients.Fil: Fittipaldi, María Sol. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Instituto de Neurología Cognitiva. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Fundación Favaloro. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt; ArgentinaFil: Abrevaya, Sofia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Instituto de Neurología Cognitiva. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Fundación Favaloro. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt; ArgentinaFil: de la Fuente de la Torre, Laura Alethia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Pascariello, Guido Orlando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Hesse Rizzi, Eugenia Fátima. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Instituto de Neurología Cognitiva. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Fundación Favaloro. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt; ArgentinaFil: Birba, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Instituto de Neurología Cognitiva. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Fundación Favaloro. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt; ArgentinaFil: Salamone, Paula Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Instituto de Neurología Cognitiva. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Fundación Favaloro. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt; ArgentinaFil: Hildebrandt, Malin. Institute for Clinical Psychology and Psychotherapy; AlemaniaFil: Alarco Martí, Sofía. Universidad Favaloro; ArgentinaFil: Pautassi, Ricardo Marcos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Huepe, David. Universidad Adolfo Ibañez; ChileFil: Martorell Martorell, Miquel. Universidad Favaloro; ArgentinaFil: Yoris, Adrián. Universidad Favaloro; ArgentinaFil: Roca, María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Instituto de Neurología Cognitiva. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Fundación Favaloro. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt; ArgentinaFil: García, Adolfo Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Instituto de Neurología Cognitiva. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Fundación Favaloro. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt; ArgentinaFil: Sedeño, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Instituto de Neurología Cognitiva. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Fundación Favaloro. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt; ArgentinaFil: Ibañez, Agustin Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Instituto de Neurología Cognitiva. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Fundación Favaloro. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt; Argentina. Universidad Adolfo Ibañez; Chile. Universidad Autónoma del Caribe; Colombi
    corecore