649 research outputs found

    Millimeter-wave and terahertz imaging techniques

    Get PDF
    This thesis presents the development and assessment of imaging techniques in the millimeterwave (mmW) and terahertz frequency bands. In the first part of the thesis, the development of a 94 GHz passive screener based on a total-power radiometer (TPR) with mechanical beamscanning is presented. Several images have been acquired with the TPR screener demonstrator, either in indoor and outdoor environments, serving as a testbed to acquire the know-how required to perform the research presented in the following parts of the thesis. In the second part of the thesis, a theoretical research on the performance of near-field passive screeners is described. This part stands out the tradeoff between spatial and radiometric resolutions taking into account the image distortion produced by placing the scenario in the near-field range of the radiometer array. In addition, the impact of the decorrelation effect in the image has been also studied simulating the reconstruction technique of a synthetic aperture radiometer. Guidelines to choose the proper radiometer depending on the application, the scenario, the acquisition speed and the tolerated image distortion are given in this part. In the third part of the thesis, the development of a correlation technique with optical processing applicable to millimeter-wave interferometric radiometers is described. The technique is capable of correlating wide-bandwidth signals in the optical domain with no loss of radiometric sensitivity. The theoretical development of the method as well as measurements validating the suitability to correlate radiometric signals are presented in this part. In the final part of the thesis, the frequency band of the imaging problem is increased to frequencies beyond 100 GHz, covering the THz band. In this case the research is centered in tomographic techniques that include spectral information of the samples in the reconstructed images. The tomographic algorithm can provide detection and identification of chemical compounds that present a certain spectral footprint in the THz frequency band.Postprint (published version

    Observational issues in radiometric and interferometric detection and analysis of the Sunyaev-Zel'dovich effects

    Full text link
    This review discusses the techniques used in single-dish and interferometric radiometric observations of the Sunyaev-Zel'dovich effects, the pitfalls that arise, the systematic and other sources of error in the data, and the uncertainties in the interpretation of the results.Comment: 46 pages, 23 figures. To appear in Background Microwave Radiation and Intracluster Cosmology, Proceedings of the International School of Physics "Enrico Fermi", Eds. Melchiorri, F. & Rephaeli, Y., 200

    CMB Telescopes and Optical Systems

    Full text link
    The cosmic microwave background radiation (CMB) is now firmly established as a fundamental and essential probe of the geometry, constituents, and birth of the Universe. The CMB is a potent observable because it can be measured with precision and accuracy. Just as importantly, theoretical models of the Universe can predict the characteristics of the CMB to high accuracy, and those predictions can be directly compared to observations. There are multiple aspects associated with making a precise measurement. In this review, we focus on optical components for the instrumentation used to measure the CMB polarization and temperature anisotropy. We begin with an overview of general considerations for CMB observations and discuss common concepts used in the community. We next consider a variety of alternatives available for a designer of a CMB telescope. Our discussion is guided by the ground and balloon-based instruments that have been implemented over the years. In the same vein, we compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT). CMB interferometers are presented briefly. We conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and Planck, to demonstrate a remarkable evolution in design, sensitivity, resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1: Telescopes and Instrumentatio

    The Impact of Atmospheric Fluctuations on Degree-scale Imaging of the Cosmic Microwave Background

    Get PDF
    Fluctuations in the brightness of the Earth's atmosphere originating from water vapor are an important source of noise for ground-based instruments attempting to measure anisotropy in the Cosmic Microwave Background. This paper presents a model for the atmospheric fluctuations and derives simple expressions to predict the contribution of the atmosphere to experimental measurements. Data from the South Pole and from the Atacama Desert in Chile, two of the driest places on Earth, are used to assess the level of fluctuations at each site.Comment: 29 pages, 7 figures, 1 table, appears in The Astrophysical Journa

    Recent Advancements in Microwave Imaging Plasma Diagnostics

    Full text link

    Optical devices: A compilation

    Get PDF
    Technological developments in the field of optics devices which have potential utility outside the aerospace community are described. Optical instrumentation, light generation and transmission, and laser techniques are among the topics covered. Patent information is given

    Technology Needs Assessment of an Atmospheric Observation System for Multidisciplinary Air Quality/Meteorology Missions, Part 2

    Get PDF
    The technology advancements that will be necessary to implement the atmospheric observation systems are considered. Upper and lower atmospheric air quality and meteorological parameters necessary to support the air quality investigations were included. The technology needs were found predominantly in areas related to sensors and measurements of air quality and meteorological measurements

    Tunable Optical Filter Using an Interferometer for Selective Modulation

    Get PDF
    Using the selective modulation interferometric spectrometer (SIMS) as a tunable filter is proposed. This tunable filter can have a large optical throughput and a resolving power on the order of a few thousand. A basic explanation of the operation of this filter is given with an emphasis on the similarities and differences between it and a Fourier spectrometer. Several equations that have been found to be particularly useful in designing, operating, and calibrating this filter are presented. The construction and operation of a tunable filter prototype are reported

    Opportunities to Intercalibrate Radiometric Sensors From International Space Station

    Get PDF
    Highly accurate measurements of Earth's thermal infrared and reflected solar radiation are required for detecting and predicting long-term climate change. We consider the concept of using the International Space Station to test instruments and techniques that would eventually be used on a dedicated mission such as the Climate Absolute Radiance and Refractivity Observatory. In particular, a quantitative investigation is performed to determine whether it is possible to use measurements obtained with a highly accurate reflected solar radiation spectrometer to calibrate similar, less accurate instruments in other low Earth orbits. Estimates of numbers of samples useful for intercalibration are made with the aid of year-long simulations of orbital motion. We conclude that the International Space Station orbit is ideally suited for the purpose of intercalibration
    • …
    corecore