135 research outputs found

    An Efficient and Layout-Independent Automatic License Plate Recognition System Based on the YOLO detector

    Full text link
    This paper presents an efficient and layout-independent Automatic License Plate Recognition (ALPR) system based on the state-of-the-art YOLO object detector that contains a unified approach for license plate (LP) detection and layout classification to improve the recognition results using post-processing rules. The system is conceived by evaluating and optimizing different models, aiming at achieving the best speed/accuracy trade-off at each stage. The networks are trained using images from several datasets, with the addition of various data augmentation techniques, so that they are robust under different conditions. The proposed system achieved an average end-to-end recognition rate of 96.9% across eight public datasets (from five different regions) used in the experiments, outperforming both previous works and commercial systems in the ChineseLP, OpenALPR-EU, SSIG-SegPlate and UFPR-ALPR datasets. In the other datasets, the proposed approach achieved competitive results to those attained by the baselines. Our system also achieved impressive frames per second (FPS) rates on a high-end GPU, being able to perform in real time even when there are four vehicles in the scene. An additional contribution is that we manually labeled 38,351 bounding boxes on 6,239 images from public datasets and made the annotations publicly available to the research community

    Exploiting Spatio-Temporal Coherence for Video Object Detection in Robotics

    Get PDF
    This paper proposes a method to enhance video object detection for indoor environments in robotics. Concretely, it exploits knowledge about the camera motion between frames to propagate previously detected objects to successive frames. The proposal is rooted in the concepts of planar homography to propose regions of interest where to find objects, and recursive Bayesian filtering to integrate observations over time. The proposal is evaluated on six virtual, indoor environments, accounting for the detection of nine object classes over a total of ∼ 7k frames. Results show that our proposal improves the recall and the F1-score by a factor of 1.41 and 1.27, respectively, as well as it achieves a significant reduction of the object categorization entropy (58.8%) when compared to a two-stage video object detection method used as baseline, at the cost of small time overheads (120 ms) and precision loss (0.92).</p

    Deep Recurrent Networks for Gesture Recognition and Synthesis

    Get PDF
    It is hard to overstate the importance of gesture-based interfaces in many applications nowadays. The adoption of such interfaces stems from the opportunities they create for incorporating natural and fluid user interactions. This highlights the importance of having gesture recognizers that are not only accurate but also easy to adopt. The ever-growing popularity of machine learning has prompted many application developers to integrate automatic methods of recognition into their products. On the one hand, deep learning often tops the list of the most powerful and robust recognizers. These methods have been consistently shown to outperform all other machine learning methods in a variety of tasks. On the other hand, deep networks can be overwhelming to use for a majority of developers, requiring a lot of tuning and tweaking to work as expected. Additionally, these networks are infamous for their requirement for large amounts of training data, further hampering their adoption in scenarios where labeled data is limited. In this dissertation, we aim to bridge the gap between the power of deep learning methods and their adoption into gesture recognition workflows. To this end, we introduce two deep network models for recognition. These models are similar in spirit, but target different application domains: one is designed for segmented gesture recognition, while the other is suitable for continuous data, tackling segmentation and recognition problems simultaneously. The distinguishing characteristic of these networks is their simplicity, small number of free parameters, and their use of common building blocks that come standard with any modern deep learning framework, making them easy to implement, train and adopt. Through evaluations, we show that our proposed models achieve state-of-the-art results in various recognition tasks and application domains spanning different input devices and interaction modalities. We demonstrate that the infamy of deep networks due to their demand for powerful hardware as well as large amounts of data is an unfair assessment. On the contrary, we show that in the absence of such data, our proposed models can be quickly trained while achieving competitive recognition accuracy. Next, we explore the problem of synthetic gesture generation: a measure often taken to address the shortage of labeled data. We extend our proposed recognition models and demonstrate that the same models can be used in a Generative Adversarial Network (GAN) architecture for synthetic gesture generation. Specifically, we show that our original recognizer can be used as the discriminator in such frameworks, while its slightly modified version can act as the gesture generator. We then formulate a novel loss function for our gesture generator, which entirely replaces the need for a discriminator network in our generative model, thereby significantly reducing the complexity of our framework. Through evaluations, we show that our model is able to improve the recognition accuracy of multiple recognizers across a variety of datasets. Through user studies, we additionally show that human evaluators mistake our synthetic samples with the real ones frequently indicating that our synthetic samples are visually realistic. Additional resources for this dissertation (such as demo videos and public source codes) are available at https://www.maghoumi.com/dissertatio

    ATHENA Research Book

    Get PDF
    The ATHENA European University is an alliance of nine Higher Education Institutions with the mission of fostering excellence in research and innovation by facilitating international cooperation. The ATHENA acronym stands for Advanced Technologies in Higher Education Alliance. The partner institutions are from France, Germany, Greece, Italy, Lithuania, Portugal, and Slovenia: the University of Orléans, the University of Siegen, the Hellenic Mediterranean University, the Niccolò Cusano University, the Vilnius Gediminas Technical University, the Polytechnic Institute of Porto, and the University of Maribor. In 2022 institutions from Poland and Spain joined the alliance: the Maria Curie-Skłodowska University and the University of Vigo. This research book presents a selection of the ATHENA university partners' research activities. It incorporates peer-reviewed original articles, reprints and student contributions. The ATHENA Research Book provides a platform that promotes joint and interdisciplinary research projects of both advanced and early-career researchers

    Study on open science: The general state of the play in Open Science principles and practices at European life sciences institutes

    Get PDF
    Nowadays, open science is a hot topic on all levels and also is one of the priorities of the European Research Area. Components that are commonly associated with open science are open access, open data, open methodology, open source, open peer review, open science policies and citizen science. Open science may a great potential to connect and influence the practices of researchers, funding institutions and the public. In this paper, we evaluate the level of openness based on public surveys at four European life sciences institute
    corecore