199 research outputs found

    A Hybrid Deep Learning Approach for Diagnosis of the Erythemato-Squamous Disease

    Full text link
    The diagnosis of the Erythemato-squamous disease (ESD) is accepted as a difficult problem in dermatology. ESD is a form of skin disease. It generally causes redness of the skin and also may cause loss of skin. They are generally due to genetic or environmental factors. ESD comprises six classes of skin conditions namely, pityriasis rubra pilaris, lichen planus, chronic dermatitis, psoriasis, seboreic dermatitis and pityriasis rosea. The automated diagnosis of ESD can help doctors and dermatologists in reducing the efforts from their end and in taking faster decisions for treatment. The literature is replete with works that used conventional machine learning methods for the diagnosis of ESD. However, there isn't much instances of application of Deep learning for the diagnosis of ESD. In this paper, we propose a novel hybrid deep learning approach i.e. Derm2Vec for the diagnosis of the ESD. Derm2Vec is a hybrid deep learning model that consists of both Autoencoders and Deep Neural Networks. We also apply a conventional Deep Neural Network (DNN) for the classification of ESD. We apply both Derm2Vec and DNN along with other traditional machine learning methods on a real world dermatology dataset. The Derm2Vec method is found to be the best performer (when taking the prediction accuracy into account) followed by DNN and Extreme Gradient Boosting.The mean CV score of Derm2Vec, DNN and Extreme Gradient Boosting are 96.92 percent, 96.65 percent and 95.80 percent respectively.Comment: Pre-review version of the paper accepted at the 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT

    Retinal vessel segmentation using textons

    Get PDF
    Segmenting vessels from retinal images, like segmentation in many other medical image domains, is a challenging task, as there is no unified way that can be adopted to extract the vessels accurately. However, it is the most critical stage in automatic assessment of various forms of diseases (e.g. Glaucoma, Age-related macular degeneration, diabetic retinopathy and cardiovascular diseases etc.). Our research aims to investigate retinal image segmentation approaches based on textons as they provide a compact description of texture that can be learnt from a training set. This thesis presents a brief review of those diseases and also includes their current situations, future trends and techniques used for their automatic diagnosis in routine clinical applications. The importance of retinal vessel segmentation is particularly emphasized in such applications. An extensive review of previous work on retinal vessel segmentation and salient texture analysis methods is presented. Five automatic retinal vessel segmentation methods are proposed in this thesis. The first method focuses on addressing the problem of removing pathological anomalies (Drusen, exudates) for retinal vessel segmentation, which have been identified by other researchers as a problem and a common source of error. The results show that the modified method shows some improvement compared to a previously published method. The second novel supervised segmentation method employs textons. We propose a new filter bank (MR11) that includes bar detectors for vascular feature extraction and other kernels to detect edges and photometric variations in the image. The k-means clustering algorithm is adopted for texton generation based on the vessel and non-vessel elements which are identified by ground truth. The third improved supervised method is developed based on the second one, in which textons are generated by k-means clustering and texton maps representing vessels are derived by back projecting pixel clusters onto hand labelled ground truth. A further step is implemented to ensure that the best combinations of textons are represented in the map and subsequently used to identify vessels in the test set. The experimental results on two benchmark datasets show that our proposed method performs well compared to other published work and the results of human experts. A further test of our system on an independent set of optical fundus images verified its consistent performance. The statistical analysis on experimental results also reveals that it is possible to train unified textons for retinal vessel segmentation. In the fourth method a novel scheme using Gabor filter bank for vessel feature extraction is proposed. The ii method is inspired by the human visual system. Machine learning is used to optimize the Gabor filter parameters. The experimental results demonstrate that our method significantly enhances the true positive rate while maintaining a level of specificity that is comparable with other approaches. Finally, we proposed a new unsupervised texton based retinal vessel segmentation method using derivative of SIFT and multi-scale Gabor filers. The lack of sufficient quantities of hand labelled ground truth and the high level of variability in ground truth labels amongst experts provides the motivation for this approach. The evaluation results reveal that our unsupervised segmentation method is comparable with the best other supervised methods and other best state of the art methods

    Technological Advances in the Diagnosis and Management of Pigmented Fundus Tumours

    Get PDF
    Choroidal naevi are the most common intraocular tumour. They can be pigmented or non-pigmented and have a predilection for the posterior uvea. The majority remain undetected and cause no harm but are increasingly found on routine community optometry examinations. Rarely does a naevus demonstrate growth or the onset of suspicious features to fulfil the criteria for a malignant melanoma. Because of this very small risk, optometrists commonly refer these patients to hospital eye units for a second opinion, triggering specialist examination and investigation, causing significant anxiety to patients and stretching medical resources. This PhD thesis introduces the MOLES acronym and scoring system that has been devised to categorise the risk of malignancy in choroidal melanocytic tumours according to Mushroom tumour shape, Orange pigment, Large tumour size, Enlarging tumour and Subretinal fluid. This is a simplified system that can be used without sophisticated imaging, and hence its main utility lies in the screening of patients with choroidal pigmented lesions in the community and general ophthalmology clinics. Under this system, lesions were categorised by a scoring system as ‘common naevus’, ‘low-risk naevus’, ‘high-risk naevus’ and ‘probable melanoma.’ According to the sum total of the scores, the MOLES system correlates well with ocular oncologists’ final diagnosis. The PhD thesis also describes a model of managing such lesions in a virtual pathway, showing that images of choroidal naevi evaluated remotely using a decision-making algorithm by masked non-medical graders or masked ophthalmologists is safe. This work prospectively validates a virtual naevus clinic model focusing on patient safety as the primary consideration. The idea of a virtual naevus clinic as a fast, one-stop, streamlined and comprehensive service is attractive for patients and healthcare systems, including an optimised patient experience with reduced delays and inconvenience from repeated visits. A safe, standardised model ensures homogeneous management of cases, appropriate and prompt return of care closer to home to community-based optometrists. This research work and strategies, such as the MOLES scoring system for triage, could empower community-based providers to deliver management of benign choroidal naevi without referral to specialist units. Based on the positive outcome of this prospective study and the MOLES studies, a ‘Virtual Naevus Clinic’ has been designed and adapted at Moorfields Eye Hospital (MEH) to prove its feasibility as a response to the COVID-19 pandemic, and with the purpose of reducing in-hospital patient journey times and increasing the capacity of the naevus clinics, while providing safe and efficient clinical care for patients. This PhD chapter describes the design, pathways, and operating procedures for the digitally enabled naevus clinics in Moorfields Eye Hospital, including what this service provides and how it will be delivered and supported. The author will share the current experience and future plan. Finally, the PhD thesis will cover a chapter that discusses the potential role of artificial intelligence (AI) in differentiating benign choroidal naevus from choroidal melanoma. The published clinical and imaging risk factors for malignant transformation of choroidal naevus will be reviewed in the context of how AI applied to existing ophthalmic imaging systems might be able to determine features on medical images in an automated way. The thesis will include current knowledge to date and describe potential benefits, limitations and key issues that could arise with this technology in the ophthalmic field. Regulatory concerns will be addressed with possible solutions on how AI could be implemented in clinical practice and embedded into existing imaging technology with the potential to improve patient care and the diagnostic process. The PhD will also explore the feasibility of developed automated deep learning models and investigate the performance of these models in diagnosing choroidal naevomelanocytic lesions based on medical imaging, including colour fundus and autofluorescence fundus photographs. This research aimed to determine the sensitivity and specificity of an automated deep learning algorithm used for binary classification to differentiate choroidal melanomas from choroidal naevi and prove that a differentiation concept utilising a machine learning algorithm is feasible

    Modeling the risks of age-related eye diseases in a population in South India

    Full text link
    The objective of this research was to determine whether an artificial intelligence methodology such as artificial neural network (ANN), a new type of predictive model offers an increased performance over a conventional logistic regression model (LR) in predicting the ranking of risk factors for irreversible age-related chronic eye diseases age-related macular degeneration (AMD), diabetic retinopathy (DR), primary open-angle glaucoma (POAG) and primary angle-closure glaucoma (PACG) in a South Indian population. The LR and ANN models were derived and validated for their respective models predictive accuracy based on a sample (n=3,723) aged >=40 years old by using a large scale population-based epidemiologic study. Sub-population data were drawn from this sample by appropriate standard techniques that used for modeling. The LR based risk score models (RS) were derived and the model fit was assessed in a standard manner including the bootstrap method for internal validity. The ANN model was built by using the multi-layer feed-forward back propagation network. The ANN models predictive ability was compared with that of traditional model with respect to the Area under the Receiver Operating Characteristic Curve (AUROC). The sensitivity and specificity of the fitted models with a threshold criterion ranged from 70% to nearly 99% overall for all models. The ANN model outperformed the traditional LR model in a sub-population analysis in predicting AMD and DR. The predictive accuracy of ANN and LR model in predicting AMD was statistically significant (AUROC=89% vs 79%; p=10 year (RS ranged from 29 to 42) was a highest priority predictor for DR. The modifiable risk factor intraocular pressure was in order of highest priority predictor for POAG and PACG. Population attributable risk percentage and population attributable fractions revealed that there is an urgent need of prioritizing modifying the modifiable factors as a public health approach. This was supported by a sensitivity analysis of the ANN model which indicated the relative importance of prioritizing modifiable risk factors on which to base preventive interventions to reduce the impact of onset or progression of these diseases

    Metformin

    Get PDF
    The book “Metformin” aims to bring to light new concepts and trends related to the many metformin therapeutic features. After a history of over 60 years, with moments of decline and spectacular returns, metformin can now be regarded as a universal panacea, the valences of its therapeutics being increasingly appreciated, both in the background treatment of diabetes and pre-diabetes, but also in reproductive pathology, cancer, cardiovascular disease, and antiageing. In this respect, the mechanisms of action and the pharmacodynamics of metformin seem to be incompletely known, a number of current studies have revealed new action valences
    • 

    corecore