41 research outputs found

    Multi-objective 3D topology optimization of next generation wireless data center network

    Get PDF
    As one of the next generation network technologies for data centers, wireless data center network has important research significance. Smart architecture optimization and management are very important for wireless data center network. With the ever-increasing demand of data center resources, there are more and more data servers deployed. However, traditional wired links among servers are expensive and inflexible. Benefited from the development of intelligent optimization and other techniques, high speed wireless topology for wireless data center network is studied. Through image processing, a radio propagation model is constructed based on a heat map. The line-of-sight issue and the interference problem are also discussed. By simultaneously considering objectives of coverage, propagation intensity and interference intensity as well as the constraint of connectivity, we formulate the topology optimization problem as a multi-objective optimization problem. To seek for solutions, we employ several state-of-the-art serial MOEAs as well as three parallel MOEAs. For the grouping in distributed parallel algorithms, prior knowledge is referred. Finally, experimental results demonstrate that, the parallel MOEAs perform effectively in optimization results and efficiently in time consumption

    Wireless Communication in Data Centers: A Survey

    Get PDF
    Data centers (DCs) is becoming increasingly an integral part of the computing infrastructures of most enterprises. Therefore, the concept of DC networks (DCNs) is receiving an increased attention in the network research community. Most DCNs deployed today can be classified as wired DCNs as copper and optical fiber cables are used for intra- and inter-rack connections in the network. Despite recent advances, wired DCNs face two inevitable problems; cabling complexity and hotspots. To address these problems, recent research works suggest the incorporation of wireless communication technology into DCNs. Wireless links can be used to either augment conventional wired DCNs, or to realize a pure wireless DCN. As the design spectrum of DCs broadens, so does the need for a clear classification to differentiate various design options. In this paper, we analyze the free space optical (FSO) communication and the 60 GHz radio frequency (RF), the two key candidate technologies for implementing wireless links in DCNs. We present a generic classification scheme that can be used to classify current and future DCNs based on the communication technology used in the network. The proposed classification is then used to review and summarize major research in this area. We also discuss open questions and future research directions in the area of wireless DCs

    Gigabit close-proximity wireless connections supported by 60 GHz RoF links with low carrier suppression

    Get PDF
    We present an experimental investigation of the 60 GHz optical carrier suppressed radio over fiber systems with less than 5 dB carrier suppression. As a case study, the 60 GHz RoF signal is generated using a 12.5 Gb/s commercially available Mach-Zehnder modulator biased at its minimum point. We report on error free transmission over 20 km of standard single mode fiber and 1 m of wireless distance. Furthermore, the efficiency of photonic RF generation depending on the value of carrier suppression is reported. We argue that transport of RoF signals with low carrier suppression assisted with simplified techniques of lightwave generation, baseband data modulation, and RF downconversion might be a promising enabling technology for fiber support of close-proximity wireless terminals

    A Hybrid Beam Steering Free-Space and Fiber Based Optical Data Center Network

    Get PDF
    Wireless data center networks (DCNs) are promising solutions to mitigate the cabling complexity in traditional wired DCNs and potentially reduce the end-to-end latency with faster propagation speed in free space. Yet, physical architectures in wireless DCNs must be carefully designed regarding wireless link blockage, obstacle bypassing, path loss, interference and spatial efficiency in a dense deployment. This paper presents the physical layer design of a hybrid FSO/in-fiber DCN while guaranteeing an all-optical, single hop, non-oversubscribed and full-bisection bandwidth network. We propose two layouts and analyze their scalability: (1) A static network utilizing only tunable sources which can scale up to 43 racks, 15,609 nodes and 15,609 channels; and (2) a re-configurable network with both tunable sources and piezoelectric actuator (PZT) based beam-steering which can scale up to 8 racks, 2,904 nodes and 185,856 channels at millisecond PZT switching time. Based on a traffic generation framework and a dynamic wavelength-timeslot scheduling algorithm, the system-level network performance is simulated for a 363-node subnet, reaching >99% throughput and 1.23 μ s average scheduler latency at 90% load
    corecore