4,159 research outputs found

    MoMo: a group mobility model for future generation mobile wireless networks

    Full text link
    Existing group mobility models were not designed to meet the requirements for accurate simulation of current and future short distance wireless networks scenarios, that need, in particular, accurate, up-to-date informa- tion on the position of each node in the network, combined with a simple and flexible approach to group mobility modeling. A new model for group mobility in wireless networks, named MoMo, is proposed in this paper, based on the combination of a memory-based individual mobility model with a flexible group behavior model. MoMo is capable of accurately describing all mobility scenarios, from individual mobility, in which nodes move inde- pendently one from the other, to tight group mobility, where mobility patterns of different nodes are strictly correlated. A new set of intrinsic properties for a mobility model is proposed and adopted in the analysis and comparison of MoMo with existing models. Next, MoMo is compared with existing group mobility models in a typical 5G network scenario, in which a set of mobile nodes cooperate in the realization of a distributed MIMO link. Results show that MoMo leads to accurate, robust and flexible modeling of mobility of groups of nodes in discrete event simulators, making it suitable for the performance evaluation of networking protocols and resource allocation algorithms in the wide range of network scenarios expected to characterize 5G networks.Comment: 25 pages, 17 figure

    Wireless Communications Challenges to Flying Ad Hoc Networks (FANET)

    Get PDF
    The increasing demand for Internet access from more and more different devices in recent years has provided a challenge for companies and the academic community to research and develop new solutions that support the increasing flow in the network, applications that require very low latencies and more dynamic and scalable infrastructures, in this context the mobile ad hoc networks (MANETs) emerged as a possible solution and applying this technology in unmanned aerial vehicles (UAVs) was developed the flying ad hoc networks (FANETs) which are wireless networks independent, its main characteristics are to have high mobility, scalability for different applications and scenarios and robustness to deal with possible communication failures. However, they still have several constraints such as limited flight time of UAVs and routing protocols that are capable of supporting network dynamics. To analyze this scenario, two simulations were developed where it was possible to observe the behavior of FANET with different routing protocols both during data transmission and video transmission. The results show that the choice of the best routing protocol must take into account the mobility of the UAVs and the necessary communication priority in the network

    Would Current Ad Hoc Routing Protocols be Adequate for the Internet of Vehicles? A Comparative Study

    Get PDF
    In recent years we have seen a great proliferation of smart vehicles, ranging from cars to little drones (both terrestrial and aerial), all endowed with sensors and communication capabilities. It is hence easy to foresee a future with even more smart and connected vehicles moving around, occupying space and creating an Internet of Vehicles (IoV). In this IoV, a multitude of nodes (both static and mobile) will generate a continuous multihop flow of local information to support local smart environment applications. Therefore, one interesting environment for the IoV would be in the form of 3-D mobile ad-hoc networks (MANETs). Unfortunately, MANET routing protocols have generally been designed and analyzed keeping in mind a 2-D scenario; there is no guarantee on how they would support a 3-D topology of the IoV. To this end, we have considered routing protocols deemed as the state-of-the-art for classic MANETs and tested them over 3-D topologies to evaluate their assets and technical challenges

    Dissimilarity metric based on local neighboring information and genetic programming for data dissemination in vehicular ad hoc networks (VANETs)

    Get PDF
    This paper presents a novel dissimilarity metric based on local neighboring information and a genetic programming approach for efficient data dissemination in Vehicular Ad Hoc Networks (VANETs). The primary aim of the dissimilarity metric is to replace the Euclidean distance in probabilistic data dissemination schemes, which use the relative Euclidean distance among vehicles to determine the retransmission probability. The novel dissimilarity metric is obtained by applying a metaheuristic genetic programming approach, which provides a formula that maximizes the Pearson Correlation Coefficient between the novel dissimilarity metric and the Euclidean metric in several representative VANET scenarios. Findings show that the obtained dissimilarity metric correlates with the Euclidean distance up to 8.9% better than classical dissimilarity metrics. Moreover, the obtained dissimilarity metric is evaluated when used in well-known data dissemination schemes, such as p-persistence, polynomial and irresponsible algorithm. The obtained dissimilarity metric achieves significant improvements in terms of reachability in comparison with the classical dissimilarity metrics and the Euclidean metric-based schemes in the studied VANET urban scenarios
    • …
    corecore