635 research outputs found

    Learning high-speed flight in the wild

    Full text link
    Quadrotors are agile. Unlike most other machines, they can traverse extremely complex environments at high speeds. To date, only expert human pilots have been able to fully exploit their capabilities. Autonomous operation with onboard sensing and computation has been limited to low speeds. State-of-the-art methods generally separate the navigation problem into subtasks: sensing, mapping, and planning. Although this approach has proven successful at low speeds, the separation it builds upon can be problematic for high-speed navigation in cluttered environments. The subtasks are executed sequentially, leading to increased processing latency and a compounding of errors through the pipeline. Here, we propose an end-to-end approach that can autonomously fly quadrotors through complex natural and human-made environments at high speeds with purely onboard sensing and computation. The key principle is to directly map noisy sensory observations to collision-free trajectories in a receding-horizon fashion. This direct mapping drastically reduces processing latency and increases robustness to noisy and incomplete perception. The sensorimotor mapping is performed by a convolutional network that is trained exclusively in simulation via privileged learning: imitating an expert with access to privileged information. By simulating realistic sensor noise, our approach achieves zero-shot transfer from simulation to challenging real-world environments that were never experienced during training: dense forests, snow-covered terrain, derailed trains, and collapsed buildings. Our work demonstrates that end-to-end policies trained in simulation enable high-speed autonomous flight through challenging environments, outperforming traditional obstacle avoidance pipelines

    Contributions to deconfliction advanced U-space services for multiple unmanned aerial systems including field tests validation

    Get PDF
    Unmanned Aerial Systems (UAS) will become commonplace, the number of UAS flying in European airspace is expected to increase from a few thousand to hundreds of thousands by 2050. To prepare for this approaching, national and international organizations involved in aerial traffic management are now developing new laws and restructuring the airspace to incorporate UAS into civil airspace. The Single European Sky ATM Research considers the development of the U-space, a crucial step to enable the safe, secure, and efficient access of a large set of UAS into airspace. The design, integration, and validation of a set of modules that contribute to our UTM architecture for advanced U-space services are described in this Thesis. With an emphasis on conflict detection and resolution features, the architecture is flexible, modular, and scalable. The UTM is designed to work without the need for human involvement, to achieve U-space required scalability due to the large number of expected operations. However, it recommends actions to the UAS operator since, under current regulations, the operator is accountable for carrying out the recommendations of the UTM. Moreover, our development is based on the Robot Operating System (ROS) and is open source. The main developments of the proposed Thesis are monitoring and tactical deconfliction services, which are in charge of identifying and resolving possible conflicts that arise in the shared airspace of several UAS. By limiting the conflict search to a local search surrounding each waypoint, the proposed conflict detection method aims to improve conflict detection. By splitting the issue down into smaller subproblems with only two waypoints, the conflict resolution method tries to decrease the deviation distance from the initial flight plan. The proposed method for resolving potential threats is based on the premise that UAS can follow trajectories in time and space properly. Therefore, another contribution of the presented Thesis is an UAS 4D trajectory follower that can correct space and temporal deviations while following a given trajectory. Currently, commercial autopilots do not offer this functionality that allows to improve the airspace occupancy using time as an additional dimension. Moreover, the integration of onboard detect and avoid capabilities, as well as the consequences for U-space services are examined in this Thesis. A module capable of detecting large static unexpected obstacles and generating an alternative route to avoid the obstacle online is presented. Finally, the presented UTM architecture has been tested in both software-in-theloop and hardware-in-the-loop development enviroments, but also in real scenarios using unmanned aircraft. These scenarios were designed by selecting the most relevant UAS operation applications, such as the inspection of wind turbines, power lines and precision agriculture, as well as event and forest monitoring. ATLAS and El Arenosillo were the locations of the tests carried out thanks to the European projects SAFEDRONE and GAUSS.Los sistemas aéreos no tripulados (UAS en inglés) se convertirán en algo habitual. Se prevé que el número de UAS que vuelen en el espacio aéreo europeo pase de unos pocos miles a cientos de miles en 2050. Para prepararse para esta aproximación, las organizaciones nacionales e internacionales dedicadas a la gestión del tráfico aéreo están elaborando nuevas leyes y reestructurando el espacio aéreo para incorporar los UAS al espacio aéreo civil. SESAR (del inglés Single European Sky ATM Research) considera el desarrollo de U-space, un paso crucial para permitir el acceso seguro y eficiente de un gran conjunto de UAS al espacio aéreo. En esta Tesis se describe el diseño, la integración y la validación de un conjunto de módulos que contribuyen a nuestra arquitectura UTM (del inglés Unmanned aerial system Traffic Management) para los servicios avanzados del U-space. Con un énfasis en las características de detección y resolución de conflictos, la arquitectura es flexible, modular y escalable. La UTM está diseñada para funcionar sin necesidad de intervención humana, para lograr la escalabilidad requerida por U-space debido al gran número de operaciones previstas. Sin embargo, la UTM únicamente recomienda acciones al operador del UAS ya que, según la normativa vigente, el operador es responsable de las operaciones realizadas. Además, nuestro desarrollo está basado en el Sistema Operativo de Robots (ROS en inglés) y es de código abierto. Los principales desarrollos de la presente Tesis son los servicios de monitorización y evitación de conflictos, que se encargan de identificar y resolver los posibles conflictos que surjan en el espacio aéreo compartido de varios UAS. Limitando la búsqueda de conflictos a una búsqueda local alrededor de cada punto de ruta, el método de detección de conflictos pretende mejorar la detección de conflictos. Al dividir el problema en subproblemas más pequeños con sólo dos puntos de ruta, el método de resolución de conflictos intenta disminuir la distancia de desviación del plan de vuelo inicial. El método de resolución de conflictos propuesto se basa en la premisa de que los UAS pueden seguir las trayectorias en el tiempo y espacio de forma adecuada. Por tanto, otra de las aportaciones de la Tesis presentada es un seguidor de trayectorias 4D de UAS que puede corregir las desviaciones espaciales y temporales mientras sigue una trayectoria determinada. Actualmente, los autopilotos comerciales no ofrecen esta funcionalidad que permite mejorar la ocupación del espacio aéreo utilizando el tiempo como una dimensión adicional. Además, en esta Tesis se examina la capacidad de integración de módulos a bordo de detección y evitación de obstáculos, así como las consecuencias para los servicios de U-space. Se presenta un módulo capaz de detectar grandes obstáculos estáticos inesperados y capaz de generar una ruta alternativa para evitar dicho obstáculo. Por último, la arquitectura UTM presentada ha sido probada en entornos de desarrollo de simulación, pero también en escenarios reales con aeronaves no tripuladas. Estos escenarios se diseñaron seleccionando las aplicaciones de operación de UAS más relevantes, como la inspección de aerogeneradores, líneas eléctricas y agricultura de precisión, así como la monitorización de eventos y bosques. ATLAS y El Arenosillo fueron las sedes de las pruebas realizadas gracias a los proyectos europeos SAFEDRONE y GAUSS

    Drones and the Creative Industry

    Get PDF
    This open access, interdisciplinary book presents innovative strategies in the use of civil drones in the cultural and creative industry. Specially aimed at small and medium-sized enterprises (SMEs), the book offers valuable insights from the fields of marketing, engineering, arts and management. With contributions from experts representing varied interests throughout the creative industry, including academic researchers, software developers and engineers, it analyzes the needs of the creative industry when using civil drones both outdoors and indoors. The book also provides timely recommendations to the industry, as well as guidance for academics and policymakers

    Unmanned aerial vehicle communications for civil applications: a review

    Get PDF
    The use of drones, formally known as unmanned aerial vehicles (UAVs), has significantly increased across a variety of applications over the past few years. This is due to the rapid advancement towards the design and production of inexpensive and dependable UAVs and the growing request for the utilization of such platforms particularly in civil applications. With their intrinsic attributes such as high mobility, rapid deployment and flexible altitude, UAVs have the potential to be utilized in many wireless system applications. On the one hand, UAVs are able to operate as flying mobile terminals within wireless/cellular networks to support a variety of missions such as goods delivery, search and rescue, precision agriculture monitoring, and remote sensing. On the other hand, UAVs can be utilized as aerial base stations to increase wireless communication coverage, reliability, and the capacity of wireless systems without additional investment in wireless systems infrastructure. The aim of this article is to review the current applications of UAVs for civil and commercial purposes. The focus of this paper is on the challenges and communication requirements associated with UAV-based communication systems. This article initially classifies UAVs in terms of various parameters, some of which can impact UAVs’ communication performance. It then provides an overview of aerial networking and investigates UAVs routing protocols specifically, which are considered as one of the challenges in UAV communication. This article later investigates the use of UAV networks in a variety of civil applications and considers many challenges and communication demands of these applications. Subsequently, different types of simulation platforms are investigated from a communication and networking viewpoint. Finally, it identifies areas of future research

    DRONE DELIVERY OF CBNRECy – DEW WEAPONS Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD)

    Get PDF
    Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD) is our sixth textbook in a series covering the world of UASs and UUVs. Our textbook takes on a whole new purview for UAS / CUAS/ UUV (drones) – how they can be used to deploy Weapons of Mass Destruction and Deception against CBRNE and civilian targets of opportunity. We are concerned with the future use of these inexpensive devices and their availability to maleficent actors. Our work suggests that UASs in air and underwater UUVs will be the future of military and civilian terrorist operations. UAS / UUVs can deliver a huge punch for a low investment and minimize human casualties.https://newprairiepress.org/ebooks/1046/thumbnail.jp

    MODELING OF INNOVATIVE LIGHTER-THAN-AIR UAV FOR LOGISTICS, SURVEILLANCE AND RESCUE OPERATIONS

    Get PDF
    An unmanned aerial vehicle (UAV) is an aircraft that can operate without the presence of pilots, either through remote control or automated systems. The first part of the dissertation provides an overview of the various types of UAVs and their design features. The second section delves into specific experiences using UAVs as part of an automated monitoring system to identify potential problems such as pipeline leaks or equipment damage by conducting airborne surveys.Lighter-than-air UAVs, such as airships, can be used for various applications, from aerial photography, including surveying terrain, monitoring an area for security purposes and gathering information about weather patterns to surveillance. The third part reveals the applications of UAVs for assisting in search and rescue operations in disaster situations and transporting natural gas. Using PowerSim software, a model of airship behaviour was created to analyze the sprint-and-drift concept and study methods of increasing the operational time of airships while having a lower environmental impact when compared to a constantly switched-on engine. The analysis provided a reliable percentage of finding the victim during patrolling operations, although it did not account for victim behaviour. The study has also shown that airships may serve as a viable alternative to pipeline transportation for natural gas. The technology has the potential to revolutionize natural gas transportation, optimizing efficiency and reducing environmental impact. Additionally, airships have a unique advantage in accessing remote and otherwise inaccessible areas, providing significant benefits in the energy sector. The employment of this technology was studied to be effective in specific scenarios, and it will be worth continuing to study it for a positive impact on society and the environment

    Counter Unmanned Aircraft Systems Technologies and Operations

    Get PDF
    As the quarter-century mark in the 21st Century nears, new aviation-related equipment has come to the forefront, both to help us and to haunt us. (Coutu, 2020) This is particularly the case with unmanned aerial vehicles (UAVs). These vehicles have grown in popularity and accessible to everyone. Of different shapes and sizes, they are widely available for purchase at relatively low prices. They have moved from the backyard recreation status to important tools for the military, intelligence agencies, and corporate organizations. New practical applications such as military equipment and weaponry are announced on a regular basis – globally. (Coutu, 2020) Every country seems to be announcing steps forward in this bludgeoning field. In our successful 2nd edition of Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets (Nichols, et al., 2019), the authors addressed three factors influencing UAS phenomena. First, unmanned aircraft technology has seen an economic explosion in production, sales, testing, specialized designs, and friendly / hostile usages of deployed UAS / UAVs / Drones. There is a huge global growing market and entrepreneurs know it. Second, hostile use of UAS is on the forefront of DoD defense and offensive planners. They are especially concerned with SWARM behavior. Movies like “Angel has Fallen,” where drones in a SWARM use facial recognition technology to kill USSS agents protecting POTUS, have built the lore of UAS and brought the problem forefront to DHS. Third, UAS technology was exploding. UAS and Counter- UAS developments in navigation, weapons, surveillance, data transfer, fuel cells, stealth, weight distribution, tactics, GPS / GNSS elements, SCADA protections, privacy invasions, terrorist uses, specialized software, and security protocols has exploded. (Nichols, et al., 2019) Our team has followed / tracked joint ventures between military and corporate entities and specialized labs to build UAS countermeasures. As authors, we felt compelled to address at least the edge of some of the new C-UAS developments. It was clear that we would be lucky if we could cover a few of – the more interesting and priority technology updates – all in the UNCLASSIFIED and OPEN sphere. Counter Unmanned Aircraft Systems: Technologies and Operations is the companion textbook to our 2nd edition. The civilian market is interesting and entrepreneurial, but the military and intelligence markets are of concern because the US does NOT lead the pack in C-UAS technologies. China does. China continues to execute its UAS proliferation along the New Silk Road Sea / Land routes (NSRL). It has maintained a 7% growth in military spending each year to support its buildup. (Nichols, et al., 2019) [Chapter 21]. They continue to innovate and have recently improved a solution for UAS flight endurance issues with the development of advanced hydrogen fuel cell. (Nichols, et al., 2019) Reed and Trubetskoy presented a terrifying map of countries in the Middle East with armed drones and their manufacturing origin. Guess who? China. (A.B. Tabriski & Justin, 2018, December) Our C-UAS textbook has as its primary mission to educate and train resources who will enter the UAS / C-UAS field and trust it will act as a call to arms for military and DHS planners.https://newprairiepress.org/ebooks/1031/thumbnail.jp
    corecore