29 research outputs found

    Martian Lava Tube Exploration Using Jumping Legged Robots: A Concept Study

    Full text link
    In recent years, robotic exploration has become increasingly important in planetary exploration. One area of particular interest for exploration is Martian lava tubes, which have several distinct features of interest. First, it is theorized that they contain more easily accessible resources such as water ice, needed for in-situ utilization on Mars. Second, lava tubes of significant size can provide radiation and impact shelter for possible future human missions to Mars. Third, lava tubes may offer a protected and preserved view into Mars' geological and possible biological past. However, exploration of these lava tubes poses significant challenges due to their sheer size, geometric complexity, uneven terrain, steep slopes, collapsed sections, significant obstacles, and unstable surfaces. Such challenges may hinder traditional wheeled rover exploration. To overcome these challenges, legged robots and particularly jumping systems have been proposed as potential solutions. Jumping legged robots utilize legs to both walk and jump. This allows them to traverse uneven terrain and steep slopes more easily compared to wheeled or tracked systems. In the context of Martian lava tube exploration, jumping legged robots would be particularly useful due to their ability to jump over big boulders, gaps, and obstacles, as well as to descend and climb steep slopes. This would allow them to explore and map such caves, and possibly collect samples from areas that may otherwise be inaccessible. This paper presents the specifications, design, capabilities, and possible mission profiles for state-of-the-art legged robots tailored to space exploration. Additionally, it presents the design, capabilities, and possible mission profiles of a new jumping legged robot for Martian lava tube exploration that is being developed at the Norwegian University of Science and Technology.Comment: 74rd International Astronautical Congress (IAC

    RoboCrane: a system for providing a power and a communication link between lunar surface and lunar caves for exploring robots

    Get PDF
    Lava caves are the result of a geological process related to the cooling of basaltic lava flows. On the Moon, this process may lead to caves several kilometers long and diameters of hundreds of meters. Access to lava tubes can be granted through skylights, a vertical pit between the lava tube and the lunar surface. This represents an outstanding opportunity for long-term missions, for future permanent human settlements, and for accessing pristine samples of lava, secondary minerals and volatiles. Given this, the ESA launched a campaign through the Open Space Innovation Platform calling for ideas that would tackle the many challenges of exploring lava pits. Five projects, including Robocrane, were selected. Solar light and direct line of sight (for communications) with the lunar surface are not available inside lava tubes. This is a problem for any robot (or swarm of robots) exploring the lava tubes. Robocrane tackles both problems by deploying an element (called the Charging head, or CH) at the bottom of the skylight by means of a crane. This CH behaves as a battery charger and a communication relay for the exploring robots. The required energy is extracted from the crane’s solar panel (on the surface) and driven to the bottom of the skylight through an electrical wire running in parallel to the crane hoisting wire. Using a crane allows the system to deal with unstable terrain around the skylight rim and protect the wires from abrasion from the rocky surface and the pit rim. The charger in the CH is wireless so that the charging process can begin as soon as any of the robots get close enough to the CH. This avoids complex and time-consuming docking operations, aggravated by the skylight floor orography. The crane infrastructure can also be used to deploy the exploring robots inside the pit, reducing their design constraints and mass budget, as the robots do not need to implement their own self-deployment system. Finally, RoboCrane includes all the sensors and actuators for remote operation from a ground station. RoboCrane has been designed in a parametric tool so it can be dynamically and rapidly adjusted to input-variable changes, such as the number of exploring robots, their electrical characteristics, and crane reach, etc.Agencia Estatal de Investigación | Ref. RTI2018-099682-A-I0

    UAV-UGV システムによる縦孔・地下空洞の計測探査シミュレーションの検討

    Get PDF
    In this paper, we discuss methods of survey, measurement, and exploration for vertical holes and underground caverns using cooperated system of UAV (Unmanned Aerial Vehicle) and UGV (Unmanned Ground Vehicle)
    corecore