212 research outputs found

    A single transformer for active cell equalization method of lithium-ion batteries with two times fewer secondaries than cells

    Get PDF
    In this paper, the concept of active cell-balancing technique, by using a multiple-outputs double-forward converter for lithium-ion (Li-ion) batteries, is investigated. It controls two times more cells than secondaries, and it equalizes eight cells in a series. In this method, four secondaries can reasonably be wound with the same back electromotive force (EMF). This means a low pin count on the transformer and a low bill of materials (BOM). The bridge uses four N-channel MOSFETs as switches, which means two times fewer transistors than cells, resulting in fewer switching losses. This scheme is applied for controlling the minimum voltage among the cells of the lithium-ion battery. It uses a multi-winding transformer based on a forward double converter structure. Conventional schemes using a multi-winding transformer for electric vehicles (EVs) require an equal number of secondaries per cell. This scheme requires one secondary for two adjacent cells, thus the number of secondaries is reduced by a factor of two. Also, the redistribution of charge from a high cell to a low cell does not require many switching components and little intelligence to determine low cell voltage detection. The basic principle of this method is to use the overall battery pack voltage as a reference to supply individual cells, using a forward converter containing a transformer with a well-chosen winding ratio. The experimental and simulation results are performed to verify the feasibility of the proposed system

    A comprehensive review on Bidirectional traction converter for Electric vehicles

    Get PDF
    In this fast-changing environmental condition, the effect of fossil fuel in vehicle is a significant concern. Many sustainable sources are being studied to replace the exhausting fossil fuel in most of the countries. This paper surveys the types of electric vehicle’s energy sources and current scenario of the on-road electric vehicle and its technical challenges. It summarizes the number of state-of-the-art research progresses in bidirectional dc-dc converters and its control strategies reported in last two decades. The performance of the various topologies of bidirectional dc-dc converters is also tabulated along with their references. Hence, this work will present a clear view on the development of state-of-the-art topologies in bidirectional dc-dc converters. This review paper will be a guide for the researchers for selecting suitable bidirectional traction dc-dc converters for electric vehicle and it gives the clear picture of this research field

    Forward converter current fed equalizer for lithium based batteries in ultralight electrical vehicles

    Get PDF
    In this paper, the concept of a forward balancing technique fed by a buck converter for lithium-based batteries in Electrical Vehicle (EV) applications is investigated. The proposed active topology equalizes eight cells in a series in a battery pack, by using a forward converter for each battery pack and the whole battery packs, using a buck converter. The battery bank consists of four battery packs, which are in series. Therefore, the proposed system will equalize 32 cells in series. In this paper, the proposed circuit employs a single transistor used in a Zero Voltage Switch (ZVS) for the forward converter. In practice, this means a capacitor in parallel with the switch at the same time a demagnetizing of the transformer is obtained. The circuit realizes a low Electromagnetic Interference (EMI) and reduces ringing. To overcome the problem of many pins on a coil former, the transformer secondary windings are made by using hairpin winding, on a ring core. It permits, e.g., having eight secondaries and uniform output voltages. Each secondary winding is made by two hairpin turns using two zero-Ohm resistors in series. The proposed topology has less components and circuitry, and it can equalize multiple battery packs by using a single buck converter and several forward converters for each battery pack. Experimental and simulation results are performed to verify the viability of the proposed topology

    Synchronous Flyback Converter Coupled with Fuzzy Logic Control Efficiently Controls a Serially Connected VRLA Battery String

    Get PDF
    AbstractThis paper presents a high efficiency charge equalization system for balancing the energy in a serially connected, valveregulated, lead acid battery string using a synchronous flyback converter. Each flyback converter was coupled through a DC-link bus in order to increase the overall energy transfer efficiency of the system and to eliminate the problem of unbalanced charging of the batteries. To ensure that the charge equalization system operated smoothly and safely charged the batteries, a fuzzy logic controller was used in the control section of the system. The validity of this approach was confirmed by computer simulation and by experimentation. The efficiency of this synchronous flyback converter was 78.9 percent, better by approximately 1.07 percentthan the conventional flyback converter

    Possibilities and limitations of active battery management systems for lithium-ion batteries

    Get PDF
    (English) Lithium-Ion Batteries (LIBs) are being used in more and more areas of application. At the same time, their chemical composition and their designs are constantly evolving. Major developments are also taking place in the field of Battery Management Systems (BMSs), which are essential for the safe operation of LIBs. The focus is on intelligent charge redistribution between individual cells, called Active Balancing (AB). This thesis deals with the possibilities and limitations of AB. An empirical long-term experiment provides new insights into the ageing behaviour of batteries that are actively balanced during their entire service life. The main objective of this work is to to demonstrate influences on the ageing behaviour of batteries that are still unknown at present. A literature study shows that previous work in this area is often based on theoretical approaches and rarely has a functional proof through measurement results. Most significant statements from literature are examined. These include the increase in discharge capacity, energy efficiency and service life associated with AB, as well as lower parameter variation of the individual cells installed in the battery. Before starting the empirical experiment, the current state of the art is captured and a universal AB topology is selected from a large number of known systems. The operating behaviour as well as the balancing algorithms are explained in detail in order to be able to understand the influences occurring during the ageing of the batteries. The ageing experiment itself is a comparison test between commercial Passive Balancing (PB) and the novel AB. Two identical battery packs are aged under uniform conditions, but with the two different BMSs mentioned above. At the end of the ageing process, the battery packs are disassembled and the parameters of all individual cells are determined for further investigation. The main contribution of this work is the proof of effects through AB, especially with large battery loads. Both the increase in discharge capacity and the service life are demonstrated. The work shows how parameter variation of individual cells can be made visible during operation. It also presents diagnosis and calculation methods. The energetic efficiency of the batteries cannot be increased, since the self-consumption of the power electronics of the AB system is always higher than with PB. However, the overall efficiency of the battery increases due to an increase in capacity and an extension of the service life. The thesis also shows that with lower battery loads, the use of AB is not beneficial any more or may lead to negative effects. In such applications conventional PB is sufficient. The results obtained during pack ageing are additionally substantiated and extended by the measurement results of the individual cells. At the end of the thesis, all results and contributions are summarised. Suggestions for optimisation as well as further research ideas are presented as a possible starting point for further scientific studies.(Català) Les bateries d’ions de liti (Lithium Ion Batteries, en anglès) s’usen en més aplicacions. Al mateix temps, la seva composició química i dissenys estan en evolució constant. Els sistemes de gestió del bateries (Battery Management Systems, en anglès), que són essencials per l’operació de les LIB, també estan en constant evolució. El focus principal està en la distribució intel·ligent de càrrega elèctrica entre cel·les individuals, l’anomenat balanceig actiu (Active Balancing, en anglès). Un assaig empíric, de llarga durada, com el dut a terme en aquest treball, dona molt informació en el procés d’envelliment de les cel·les durant tota la seva vida. El principal objectiu d’aquest treball és demostrar les influències encara desconegudes en el procés d’envelliment de les cel·les. L’estudi de la literatura mostra que el treball previ en aquesta àrea està sovint basat en aproximacions teòriques i estranyament ensenya resultats empírics que ho corroborin. En aquest treball s’examinen la majoria de presumpcions que es poden trobar a la literatura. Aquestes inclouen l’increment en la capacitat, l’eficiència energètica i la vida útil associada a un balanceig actiu de les cel·les, així com la reducció de la variació dels paràmetres de cada cel·la en una bateria. Abans de procedir amb l’experiment empíric, es revisa l’estat de l’art en els aspectes fonamentals per aquest estudi. També se selecciona una tipologia de sistema de balanceig actiu per tal de realitzar l’experiment. El treball detalla el procediment d’operació així com l’algoritme de balanceig actiu implementat per tal d’entendre els fenòmens que influencien la degradació de les cel·les durant la seva vida. L’experiment d’envelliment és una comparació entre un sistema de balanceig passiu (Passive Balancing, en anglès) i un de balanceig actiu. Per això s’escullen dues bateries idèntiques, però gestionades diferentment per dos sistemes de gestió diferents. Al final de l’assaig, les bateries es desmunten i s’analitza cada cel·la de forma individual per tal de determinar-ne els seus paràmetres i el seu envelliment. La principal contribució d’aquest treball es el demostrar els efectes del balanceig actiu , sobretot en bateries amb una càrrega elevada. El treball demostra que el balanceig actiu millor gla capacitat de la bateria i la vida útil. El treball també mostra com la variació dels paràmetres de les cel·les es pot fer visible durant la seva operació. També presenta nous mètodes de diagnosi i càlcul d’aquests paràmetres. L’eficiència energètica de les bateries no es pot augmentar degut al consum propi i les pèrdues del sistema de balanceig actiu basat en electrònica de potencia. Si que augmenta l’eficiència global de la bateria, ja que augmenta la seva capacitat i la vida útil. El treball també mostra que en bateries sotmeses a baixa càrrega, el balanceig actiu no aporta cap avantatge respecte el balanceig passiu. Fins i tot en algunes situacions, els efectes del balanceig actiu són negatius. En aquestes aplicacions, es recomana l’ús d’un sistema de balanceig passiu. Els resultats obtinguts durant l’assaig de la bateria queden reforçats quan es fa l’anàlisi de cada cel·la de forma individual. Al final del treball, es resumeixen tots els resultats a més de proporcionar suggereixes per la optimització així com possibles línies de futures investigacionsPostprint (published version

    Battery charging system incorporating an equalisation circuit for electric vehicles

    Get PDF
    Ph.D. ThesisHybrid electric vehicles (HEVs) and electric vehicles (EVs) are gaining in popularity mainly due to the fact that unlike combustion-powered vehicles, they do not pollute with greenhouse gases and toxic particles. Most HEVs and EVs are powered by lithium-ion battery packs which have high power density and longer cycle lives compared to other battery types. Each pack is made out of many battery cells in series connected and due to manufacturing tolerances and chemical processes in individual cells each cell has its own electric characteristics. In order to achieve a balanced voltage across all cells, a battery management system (BMS) must be employed to actively monitor and balance the cells voltage. On-board battery chargers are installed in HEVs/EVs to charge the lithium-ion battery pack from the grid. This charger converts AC grid voltage into a controllable DC output voltage, but it adds weight to the vehicle, reducing the overall efficiency of an HEV/EV and also increasing its cost. The aim of researches in multi-functional power electronics is to design systems which perform several different functions at the same time. These systems promise cost and weight reductions since only one circuit is used to conduct different functions. An example is the electric drive in an HEV/EV. On one hand, it propels the car forward when driving, while on the other hand the battery can be charged via a modified electric motor and inverter topology. Thus, no additional on-board charger is required. This thesis describes a new multi-functional circuit for HEVs/EVs which combines the functions of voltage equalisation with grid charging. Compared to a drive system, the proposed circuit does not rely on an electric motor to charge the battery. Various battery chargers and equalisation circuits are first compared. Then, the design of the proposed circuit is described and simulation results are presented for charging and voltage balancing. An experimental test rig was built and practical results have been captured and compared with simulation results for validation. The advantages and disadvantages of the proposed circuit are discussed at the end of the thesis. Keywords- Multi-functional system, Battery charging, Voltage equalisation, Lithium-ion batter

    A review on power electronic converters for modular BMS with active balancing

    Get PDF
    Electric vehicles (EVs) are becoming increasingly popular due to their low emissions, energy efficiency, and reduced reliance on fossil fuels. One of the most critical components in an EV is the energy storage and management system, which requires compactness, lightweight, high efficiency, and superior build quality. Active cell equalization circuits such as those used in battery management systems (BMS) have been developed to balance the voltage and state of charge (SoC) of individual cells, ensuring the safety and reliability of the energy storage system. The use of these types of equalization circuits offers several benefits including improved battery performance, extended battery life, and enhanced safety, which are essential for the successful adoption of EVs. This paper provides a comprehensive overview of the research works related to active cell equalization circuits. This review highlights the important aspects, advantages and disadvantages, and specifications.This work was supported by FCT—Fundação para a Ciência e Tecnologia, within the R&D Units Project Scope UIDB/00319/2020. Luis A. M. Barros is supported by the doctoral scholarship PD/BD/143006/2018, granted by the Portuguese FCT foundation

    Energy efficiency improvement of Li-ion battery packs via balancing techniques

    Get PDF
    Due to worldwide energy consumption increase, different energy strategies are growing in order to reduce fossil fuel consumption, increase renewable energy impact and increase energy efficiency. Renewable energy impact in the electric grid is increased by combination with energy storage systems. Energy storage systems storage energy during low consumption periods and insert energy during high power demand time. The efficiency and the stability of the electric grid are improved. The thesis work is focused on the energy improvement of Li-ion based energy storage systems. To improve the energy of series connected Li-ion energy storage system balancing systems are required. The thesis deals with the analysis of unbalancing processes in series connected Li-ion cells and the balancing system design to improve the Li-ion battery pack energetic behavior. The search of a low complexity active balancing system to compete against the passive balancing system is one of the most important research lines.Mundu mailako energia kontsumoa igotzen ari denez, araudi energetiko berriak sortzen ari dira erregai fosilen kontsumoa murritzeko, energia berriztagarriak ezartzeko eta efizientzia energetikoa handitzeko. Energia berriztagarrien ezartzea eta beraien erabilpena sare elektrikoan, asko hobetzen da metatze sistemen laguntzarekin. Metatze sistemek energia batzen dute kontsumo txikiko uneetan energia txertatuz sare elektrikora kontsumo handiko aldiuneetan, sare elektrikoaren efizientzia eta egonkortasuna hobetuz. Tesi lana litio ioizko metatze sistemen energia efizientzia hobetzean datza. Litio ioizko metatze sistemak litio zelden serie konekzioak dira. Seriean konektatuko sistema hauen efizientzia hobetzeko beharrezkoa da sistema orekatzaileak erabiltzea zelden artean sortutako desberdintasunak konpentsatzeko. Tesi hau zelden arteko desoreken analisian eta desoreka hauek konpentsatzeko beharrezkoak diren oreka sistemen diseinuan zentratzen da. Oreka sistema aktibo konpetitiboen diseinua, oreka sistema pasiboekin lehiatzeko da tesiaren lan inguru nagusienetakoa

    Powering the future: a comprehensive review of battery energy storage systems

    Get PDF
    Global society is significantly speeding up the adoption of renewable energy sources and their integration into the current existing grid in order to counteract growing environmental problems, particularly the increased carbon dioxide emission of the last century. Renewable energy sources have a tremendous potential to reduce carbon dioxide emissions because they practically never produce any carbon dioxide or other pollutants. On the other hand, these energy sources are usually influenced by geographical location, weather, and other factors that are of stochastic nature. The battery energy storage system can be applied to store the energy produced by RESs and then utilized regularly and within limits as necessary to lessen the impact of the intermittent nature of renewable energy sources. The main purpose of the review paper is to present the current state of the art of battery energy storage systems and identify their advantages and disadvantages. At the same time, this helps researchers and engineers in the field to find out the most appropriate configuration for a particular application. This study offers a thorough analysis of the battery energy storage system with regard to battery chemistries, power electronics, and management approaches. This paper also offers a detailed analysis of battery energy storage system applications and investigates the shortcomings of the current best battery energy storage system architectures to pinpoint areas that require further study.This publication is part of the project TED2021-132864A-I00, funded by MCIN/ AEI/10.13039/501100011033 and by the European Union “NextGenerationEU”/PRTR”.Peer ReviewedPostprint (published version
    corecore