155 research outputs found

    Courcelle's Theorem - A Game-Theoretic Approach

    Get PDF
    Courcelle's Theorem states that every problem definable in Monadic Second-Order logic can be solved in linear time on structures of bounded treewidth, for example, by constructing a tree automaton that recognizes or rejects a tree decomposition of the structure. Existing, optimized software like the MONA tool can be used to build the corresponding tree automata, which for bounded treewidth are of constant size. Unfortunately, the constants involved can become extremely large - every quantifier alternation requires a power set construction for the automaton. Here, the required space can become a problem in practical applications. In this paper, we present a novel, direct approach based on model checking games, which avoids the expensive power set construction. Experiments with an implementation are promising, and we can solve problems on graphs where the automata-theoretic approach fails in practice.Comment: submitte

    Two-Way Visibly Pushdown Automata and Transducers

    Full text link
    Automata-logic connections are pillars of the theory of regular languages. Such connections are harder to obtain for transducers, but important results have been obtained recently for word-to-word transformations, showing that the three following models are equivalent: deterministic two-way transducers, monadic second-order (MSO) transducers, and deterministic one-way automata equipped with a finite number of registers. Nested words are words with a nesting structure, allowing to model unranked trees as their depth-first-search linearisations. In this paper, we consider transformations from nested words to words, allowing in particular to produce unranked trees if output words have a nesting structure. The model of visibly pushdown transducers allows to describe such transformations, and we propose a simple deterministic extension of this model with two-way moves that has the following properties: i) it is a simple computational model, that naturally has a good evaluation complexity; ii) it is expressive: it subsumes nested word-to-word MSO transducers, and the exact expressiveness of MSO transducers is recovered using a simple syntactic restriction; iii) it has good algorithmic/closure properties: the model is closed under composition with a unambiguous one-way letter-to-letter transducer which gives closure under regular look-around, and has a decidable equivalence problem

    Parameterized Linear Temporal Logics Meet Costs: Still not Costlier than LTL

    Full text link
    We continue the investigation of parameterized extensions of Linear Temporal Logic (LTL) that retain the attractive algorithmic properties of LTL: a polynomial space model checking algorithm and a doubly-exponential time algorithm for solving games. Alur et al. and Kupferman et al. showed that this is the case for Parametric LTL (PLTL) and PROMPT-LTL respectively, which have temporal operators equipped with variables that bound their scope in time. Later, this was also shown to be true for Parametric LDL (PLDL), which extends PLTL to be able to express all omega-regular properties. Here, we generalize PLTL to systems with costs, i.e., we do not bound the scope of operators in time, but bound the scope in terms of the cost accumulated during time. Again, we show that model checking and solving games for specifications in PLTL with costs is not harder than the corresponding problems for LTL. Finally, we discuss PLDL with costs and extensions to multiple cost functions.Comment: In Proceedings GandALF 2015, arXiv:1509.0685

    Emptiness of Zero Automata Is Decidable

    Get PDF
    Zero automata are a probabilistic extension of parity automata on infinite trees. The satisfiability of a certain probabilistic variant of MSO, called TMSO+zero, reduces to the emptiness problem for zero automata. We introduce a variant of zero automata called nonzero automata. We prove that for every zero automaton there is an equivalent nonzero automaton of quadratic size and the emptiness problem of nonzero automata is decidable, with complexity co-NP. These results imply that TMSO+zero has decidable satisfiability

    Computations by fly-automata beyond monadic second-order logic

    Full text link
    We present logically based methods for constructing XP and FPT graph algorithms, parametrized by tree-width or clique-width. We will use fly-automata introduced in a previous article. They make possible to check properties that are not monadic second-order expressible because their states may include counters, so that their sets of states may be infinite. We equip these automata with output functions, so that they can compute values associated with terms or graphs. Rather than new algorithmic results we present tools for constructing easily certain dynamic programming algorithms by combining predefined automata for basic functions and properties.Comment: Accepted for publication in Theoretical Computer Scienc

    Relational semantics of linear logic and higher-order model-checking

    Full text link
    In this article, we develop a new and somewhat unexpected connection between higher-order model-checking and linear logic. Our starting point is the observation that once embedded in the relational semantics of linear logic, the Church encoding of any higher-order recursion scheme (HORS) comes together with a dual Church encoding of an alternating tree automata (ATA) of the same signature. Moreover, the interaction between the relational interpretations of the HORS and of the ATA identifies the set of accepting states of the tree automaton against the infinite tree generated by the recursion scheme. We show how to extend this result to alternating parity automata (APT) by introducing a parametric version of the exponential modality of linear logic, capturing the formal properties of colors (or priorities) in higher-order model-checking. We show in particular how to reunderstand in this way the type-theoretic approach to higher-order model-checking developed by Kobayashi and Ong. We briefly explain in the end of the paper how his analysis driven by linear logic results in a new and purely semantic proof of decidability of the formulas of the monadic second-order logic for higher-order recursion schemes.Comment: 24 pages. Submitte

    Recursion Schemes and Logical Reflection

    Get PDF
    International audienceLet R be a class of generators of node-labelled infinite trees, and L be a logical language for describing correctness properties of these trees. Given r in R and phi in L, we say that r_phi is a phi-reflection of r just if (i) r and r_phi generate the same underlying tree, and (ii) suppose a node u of the tree t(r) generated by r has label f, then the label of the node u of t(r_phi) is f* if u in t(r) satisfies phi; it is f otherwise. Thus if t(r) is the computation tree of a program r, we may regard r_phi as a transform of r that can internally observe its behaviour against a specification phi. We say that R is (constructively) reflective w.r.t. L just if there is an algorithm that transforms a given pair (r,phi) to r_phi. In this paper, we prove that higher-order recursion schemes are reflective w.r.t. both modal mu-calculus and monadic second order (MSO) logic. To obtain this result, we give the first characterisation of the winning regions of parity games over the transition graphs of collapsible pushdown automata (CPDA): they are regular sets defined by a new class of automata. (Order-n recursion schemes are equi-expressive with order-n CPDA for generating trees.) As a corollary, we show that these schemes are closed under the operation of MSO-interpretation followed by tree unfolding a la Caucal

    Recursion Schemes and Logical Reflection

    Get PDF
    International audienceLet R be a class of generators of node-labelled infinite trees, and L be a logical language for describing correctness properties of these trees. Given r in R and phi in L, we say that r_phi is a phi-reflection of r just if (i) r and r_phi generate the same underlying tree, and (ii) suppose a node u of the tree t(r) generated by r has label f, then the label of the node u of t(r_phi) is f* if u in t(r) satisfies phi; it is f otherwise. Thus if t(r) is the computation tree of a program r, we may regard r_phi as a transform of r that can internally observe its behaviour against a specification phi. We say that R is (constructively) reflective w.r.t. L just if there is an algorithm that transforms a given pair (r,phi) to r_phi. In this paper, we prove that higher-order recursion schemes are reflective w.r.t. both modal mu-calculus and monadic second order (MSO) logic. To obtain this result, we give the first characterisation of the winning regions of parity games over the transition graphs of collapsible pushdown automata (CPDA): they are regular sets defined by a new class of automata. (Order-n recursion schemes are equi-expressive with order-n CPDA for generating trees.) As a corollary, we show that these schemes are closed under the operation of MSO-interpretation followed by tree unfolding a la Caucal
    • …
    corecore