1,314 research outputs found

    Numerical investigation of the effects of pedestrian barriers on aeroelastic stability of a proposed footbridge

    Get PDF
    A numerical investigation into the aerodynamic characteristics and aeroelastic stability of a proposed footbridge across a motorway in the north of England has been undertaken. The longer than usual span, along with the unusual nature of the pedestrian barriers, indicated that the deck configuration was likely to be beyond the reliable limits of the British design code BD 49/01. In particular, the investigation focussed on the susceptibility of the bridge due to flutter, and to assess if the design wind speeds could be met satisfactorily. The calculations were performed using the discrete vortex method, DIVEX, developed at the Universities of Glasgow and Strathclyde. DIVEX has been successfully validated on a wide range of problems, including the aeroelastic response of bridge deck sections. The proposed deck configuration, which incorporated a pedestrian barrier comprised of angled flat plates, was found to be unstable at low wind speeds with the plates having a strong turning effect on the flow at the leading edge of the deck. DIVEX was used to assess a number of alternative design options, investigating the stability with respect to flutter for each configuration. Reducing the number of flat plates and their angle to the deck lessened the effect of the barrier on the overall aerodynamic characteristics and increased the stability of the bridge to an acceptable level, with the critical flutter speed in excess of the specified design speed

    Aerodynamic Flutter and Buffeting of Long-span Bridges under Wind Load

    Get PDF
    With the continuous increase of span lengths, the aerodynamic characteristics of long-span bridges under external wind excitation have become much more complex and wind-induced vibration has always been a problem of great concern. The present research targets on the aerodynamic performance of long-span bridges under wind load with an emphasis on bridge flutter and buffeting. For the aerodynamic flutter analysis of long-span bridges, the present research investigated the effects of the wind turbulence on flutter stability. The characterizations of the self-excited forces are presented in both the frequency-domain and in the time-domain, and the flutter analysis is conducted under both uniform and turbulent flows. The effect of wind turbulence is directly modeled in time-domain to avoid the complicated random parametric excitation analysis of the equation of motion used in previous studies. It is found that turbulence has a stabilizing effect on bridge aerodynamic flutter. A probabilistic flutter analysis of long-span bridges involving random and uncertain variables is also conducted, which can provide more accurate and adequate information than the critical flutter velocity for wind resistance design of long-span bridges. For the buffeting analysis of long-span bridges, the stress-level buffeting analysis of the bridge under spatial distributed forces is conducted to investigate the effects of wind turbulence on the fatigue damage of long-span bridges. It is found that the increase of the turbulence intensity has a strengthening effect on the buffeting-induced fatigue damage of long-span bridges. For buffeting control, a lever-type TMD system is proposed for suppressing excessive buffeting responses of long-span bridges. The lever-type TMD with an adjustable frequency can overcome the drawback of excessive static stretch of the spring of traditional hanging-type TMD and be adaptive to the change of the environment and the structure itself. To effectively apply the lever-type TMD to future feedback control design, the control performance of the lever-type TMD for excessive buffeting responses of long-span bridges has been studied. The effects of wind velocity and attack angle and the stiffness reduction of bridge girder on the control efficiency have also been investigated to determine the adjustment strategy of the lever-type TMD. It is found that the control efficiency of the lever-type TMD varies greatly with the change of the location of the mass block. The lever-type TMD should be adjusted accordingly based on comprehensive consideration of the environment change and specific control objectives

    Improving the Dynamics of Suspension Bridges using Active Control Systems

    Get PDF
    Improving the dynamics of suspension bridge using active control is discussed in this paper. The main dynamic problem with long suspension bridges is the aeroelastic phenomenon called flutter. Flutter oscillations of a bridge girder is a stability problem and the oscillations are perpendicular to the direction of the wind and occur when the bridge is exposed to wind velocity above critical value called the flutter wind velocity Ucr.</p

    Improving the Dynamics of Suspension Bridges using Active Control Systems

    Get PDF

    Wind Action Phenomena Associated with Large-Span Bridges

    Get PDF
    In the past, the design of bridges over increasing distances was limited by construction techniques and, as always, by economics. As technological advances have turned possible cable-supported bridges of incredible spans, a new challenge has been added to the equation: that of withstanding the action of winds without developing undesirable dynamic responses. In this chapter, the several aerodynamic phenomena of relevance to long-span bridges are classified and discussed. This will interest both experts and non-experts in the field, thanks to the overview that is given. For certain cases, codes of practice recommend wind tunnel tests. The reader is introduced to these, as well as to numerical simulations, which are currently gaining increasing importance. Next, measures for attenuating susceptibility for undesirable dynamic responses are reviewed. The chapter ends with a discussion of the Vila Real Bridge deck section, based on wind tunnel tests and numerical simulations carried out by the authors: the aerodynamics was effectively improved with geometrically subtle modifications that were proposed and adopted still in the design phase

    Dynamic performance of bridges and vehicles under strong wind

    Get PDF
    The record of span length for flexible bridges has been broken with the development of modern materials and construction techniques. With the increase of bridge span, the dynamic response of the bridge becomes more significant under external wind action and traffic loads. The present research targets specifically on dynamic performance of bridges as well as the transportation under strong wind. The dissertation studied the coupled vibration features of bridges under strong wind. The current research proposed the modal coupling assessment technique for bridges. A closed-form spectral solution and a practical methodology are provided to predict coupled multimode vibration without actually solving the coupled equations. The modal coupling effect was then quantified using a so-called modal coupling factor (MCF). Based on the modal coupling analysis techniques, the mechanism of transition from multi-frequency type of buffeting to single-frequency type of flutter was numerically demonstrated. As a result, the transition phenomena observed from wind tunnel tests can be better understood and some confusing concepts in flutter vibrations are clarified. The framework of vehicle-bridge-wind interaction analysis model was then built. With the interaction model, the dynamic performance of vehicles and bridges under wind and road roughness input can be assessed for different vehicle numbers and different vehicle types. Based on interaction analysis results, the framework of vehicle accident analysis model was introduced. As a result, the safer vehicle transportation under wind can be expected and the service capabilities of those transportation infrastructures can be maximized. Such result is especially important for evacuation planning to potentially save lives during evacuation in hurricane-prone area. The dissertation finally studied how to improve the dynamic performance of bridges under wind. The special features of structural control with Tuned Mass Dampers (TMD) on the buffeting response under strong wind were studied. It was found that TMD can also be very efficient when wind speed is high through attenuating modal coupling effects among modes. A 3-row TMD control strategy and a moveable control strategy under hurricane conditions were then proposed to achieve better control performance

    Effect of stabilizer on flutter stability of truss girder suspension bridges

    Get PDF
    An aerodynamic optimization measure of the flutter stability of long-span suspension bridges with truss girder is presented in this paper. At first, the improvement of several kinds of central stabilizers and horizontal stabilizers on flutter stability is examined through series of section model and full aeroelastic model wind tunnel tests. Subsequently, the flutter derivatives of the truss girder with and without stabilizer are identified based on two degrees of freedom coupling free vibration method. Furthermore, based on the identified flutter derivatives, the critical flutter velocities of the truss girder section with and without stabilizer are analyzed through two dimensional flutter analysis method and the critical flutter velocities of the full bridge with and without stabilizer are analyzed through three dimensional method. Afterwards, the influence of each flutter derivative on the flutter stability of the truss girder is investigated. The results indicate that central upper stabilizer can effectively increase the critical flutter velocity of the truss girder. In contrast, the central lower stabilizer and horizontal stabilizer have less influence. Setting up central upper stabilizer leads to an obvious decrease in the value of the flutter derivatives A2* and H2*, while the flutter derivatives H1*, H4*, A1* and A3* are little influenced. The two dimensional and three dimensional flutter analysis results agree well with the sectional model and full model wind tunnel test results respectively

    Study of passive deck-flaps flutter control system on full bridge model. I: Theory.

    Get PDF
    Peer reviewedPreprin
    • …
    corecore