15,747 research outputs found

    Photoacoustic computed tomography guided microrobots for targeted navigation in intestines in vivo

    Get PDF
    Tremendous progress in synthetic micro/nanomotors has been made for potential biomedical applications. However, existing micro/nanomotor platforms are inefficient for deep tissue imaging and motion control in vivo. Here, we present a photoacoustic computed tomography (PACT) guided investigation of micromotors in intestines in vivo. The micromotors enveloped in microcapsules exhibit efficient propulsion in various biofluids once released. PACT has visualized the migration of micromotor capsules toward the targeted regions in real time in vivo. The integration of the developed microrobotic system and PACT enables deep imaging and precise control of the micromotors in vivo

    Image reconstruction in fluorescence molecular tomography with sparsity-initialized maximum-likelihood expectation maximization

    Get PDF
    We present a reconstruction method involving maximum-likelihood expectation maximization (MLEM) to model Poisson noise as applied to fluorescence molecular tomography (FMT). MLEM is initialized with the output from a sparse reconstruction-based approach, which performs truncated singular value decomposition-based preconditioning followed by fast iterative shrinkage-thresholding algorithm (FISTA) to enforce sparsity. The motivation for this approach is that sparsity information could be accounted for within the initialization, while MLEM would accurately model Poisson noise in the FMT system. Simulation experiments show the proposed method significantly improves images qualitatively and quantitatively. The method results in over 20 times faster convergence compared to uniformly initialized MLEM and improves robustness to noise compared to pure sparse reconstruction. We also theoretically justify the ability of the proposed approach to reduce noise in the background region compared to pure sparse reconstruction. Overall, these results provide strong evidence to model Poisson noise in FMT reconstruction and for application of the proposed reconstruction framework to FMT imaging

    State-of-the art of acousto-optic sensing and imaging of turbid media

    Get PDF
    Acousto-optic (AO) is an emerging hybrid technique for measuring optical contrast in turbid media using coherent light and ultrasound (US). A turbid object is illuminated with a coherent light source leading to speckle formation in the remitted light. With the use of US, a small volume is selected,which is commonly referred to as the “tagging” volume. This volume acts as a source of modulated light, where modulation might involve phase and intensity change. The tagging volume is created by focusing ultrasound for good lateral resolution; the axial resolution is accomplished by making either the US frequency, amplitude, or phase time-dependent. Typical resolutions are in the order of 1 mm. We will concentrate on the progress in the field since 2003. Different schemes will be discussed to detect the modulated photons based on speckle detection, heterodyne detection, photorefractive crystal (PRC) assisted detection, and spectral hole burning (SHB) as well as Fabry-Perot interferometers. The SHB and Fabry-Perot interferometer techniques are insensitive to speckle decorrelation and therefore suitable for in vivo imaging. However, heterodyne and PRC methods also have potential for in vivo measurements. Besides measuring optical properties such as scattering and absorption, AO can be applied in fluorescence and elastography applications
    • …
    corecore