1,518 research outputs found

    The Application of Multi-dimensional Fluorescence Imaging to Microfluidic Systems

    No full text
    This thesis describes the application of multidimensional fluorescence imaging to microfluidic systems. The work focuses on time- and polarisation-resolved fluorescence microscopy to extract information from microchannel environments. The methods are applied to polymerase chain reaction (PCR) and a DNA repair enzyme, uracil DNA glycosylase (UDG). The fluorescence lifetimes Rhodamine B are calibrated over a thermal gradient using time correlated single photon counting. The dye is then introduced in solution into a novel microfluidic PCR device. Fluorescence lifetime imaging microscopy (FLIM) is then performed, and using the calibration curve, the temperature distributions are accurately determined. The device is subsequently optimised for efficient DNA amplification. A line-scanning FLIM microscope is used to characterise a rapid microfluidic mixer via a fluorescence quenching experiment. Fluorescein and sodium iodide are mixed in a continuous flow format and imaged in 3-D. The spatial distributions of the fluorescence lifetimes are converted to the concentrations of sodium iodide to quantify mixing. Computational fluid dynamic (CFD) simulations are validated by comparison to the quantitative concentrations obtained experimentally. The binding reaction between UDG and a hexachlorofluorescein (HEX) labelled DNA strand is characterised spectrally. As well as an increase in fluorescence polarisation anisotropy, a 700 ps increase in the fluorescence lifetime is measured. Confocal microscopy shows the same spectral properties when the reaction is performed in both simple and rapid microfluidic mixers. In the latter experiment, a concentration series allows the determination of kinetics, which agree with conventional stopped-flow data. A two-colour two-photon (2c2p) FLIM microscope is developed and applied to the UDG-DNA system. An oligonucleotide containing 2-aminopurine, a reporter of DNA base flipping, and HEX is mixed with UDG in a microfluidic Y-mixer. The 2c2p excitation allows FLIM of both fluorophores and hence detection of binding and base flipping. Comparison to CFD with known kinetic rate constants confirms the experimental observations

    Population balances combined with computational fluid dynamics : a modeling approach for dispersive mixing in a high pressure homogenizer

    Get PDF
    High pressure homogenization is at the heart of many emulsification processes in the food, personal care and pharmaceutical industry. The droplet size distribution is an important property for product quality and is aimed to be controlled in the process. Therefore a population balance model was built in order to predict the droplet size distribution subject to various hydrodynamic conditions found in a high pressure homogenizer. The hydrodynamics were simulated using Computational Fluid Dynamics and the turbulence was modeled with a RANS k–e model. The high energy zone in the high pressure homogenizer was divided into four compartments. The compartments had to be small enough to secure nearly homogeneous turbulent dissipation rates but large enough to hold a population of droplets. A population balance equation describing breakage and coalescence of oil droplets in turbulent flow was solved for every compartment. One set of parameters was found which could describe the development of the droplet size distribution in the high pressure homogenizer with varying pressure drop. An improvement of 65% was found compared to the same model containing just one compartment. The compartment approach may provide an alternative to direct coupling of CFD and population balances

    Mass Transfer

    Get PDF
    This book covers a wide variety of topics related to advancements in different stages of mass transfer modelling processes. Its purpose is to create a platform for the exchange of recent observations, experiences, and achievements. It is recommended for those in the chemical, biotechnological, pharmaceutical, and nanotechnology industries as well as for students of natural sciences, technical, environmental and employees in companies which manufacture machines for the above-mentioned industries. This work can also be a useful source for researchers and engineers dealing with mass transfer and related issues

    Magnetic field stimulation of magnetic nanoparticles for the intensification of scalar transport

    Get PDF
    Dans cette thĂšse, le transport de scalaires dans des ferrofluides / ferrogels est Ă©tudiĂ© thĂ©oriquement et expĂ©rimentalement. L’intĂ©rĂȘt principal est de quantifier expĂ©rimentalement le processus de transport de masse dans des ferrofluides / ferrogels exposĂ©s Ă  un champ magnĂ©tique externe et de comprendre les mĂ©canismes sous-jacents Ă  ces processus Ă  la lumiĂšre de simulations ferrohydrodynamiques (FHD). Nous visons Ă©galement Ă  utiliser les phĂ©nomĂšnes de transport amĂ©liorĂ©s, identifiĂ©s dans les ferrofluides pour des applications de gĂ©nie de la rĂ©action chimique, par le biais d'Ă©tudes expĂ©rimentales sur le mĂ©lange / micromĂ©lange en micro-canal. L’introduction prĂ©sente les principes de base de la dynamique des ferrofluides et des nanoparticules magnĂ©tiques (NPM) du point de vue de la mĂ©canique des fluides et de la physique des colloĂŻdes. Le cadre de ferrohydrodynamique, englobant les Ă©quations du mouvement des ferrofluides en relation avec la relaxation magnĂ©tique, y est expliquĂ©. La littĂ©rature rĂ©cente pertinente au transport de scalaires et au mĂ©lange dans les ferrofluides est examinĂ©e et les mĂ©canismes d'intensification de transport de masse dans le ferrofluides excitĂ©s par divers types de champs magnĂ©tiques sont discutĂ©s. Le premiĂšre chapitre prĂ©sente des observations expĂ©rimentales et des simulations numĂ©riques sur le transport de scalaires dans un ferrofluide de type Brownien au repos mais soumis Ă  un champ magnĂ©tique rotatif (CMR). Les expĂ©riences de transport de masse ont Ă©tĂ© conduites dans un mĂ©langeur capillaire en T excitĂ© transversalement par un champ magnĂ©tique uniforme. Une augmentation significative du transport de masse a Ă©tĂ© observĂ©e en prĂ©sence de CMR dans une direction normale Ă  l'axe de rotation du champ magnĂ©tique. Un tel contrĂŽle directionnel par CMR a permis de mettre en Ă©vidence le caractĂšre anisotrope du flux de masse puisque la diffusion molĂ©culaire Ă©tait le seul mĂ©canisme de transport agissant dans une direction parallĂšle Ă  l'axe du capillaire. Le rĂŽle de l'advection du ferrofluide induite par CMR (Ă©coulement spin-up) quant Ă  l'amĂ©lioration du transport de masse a Ă©tĂ© examinĂ© Ă  la lumiĂšre de la solution de l'Ă©quation d’advection-diffusion et de la comparaison des prĂ©dictions numĂ©riques de FHD avec les rĂ©sultats expĂ©rimentaux. Une analyse comparative systĂ©matique des simulations numĂ©riques par rapport aux observations expĂ©rimentales a rĂ©vĂ©lĂ© que la diffusivitĂ© effective dans le ferrofluide peut ĂȘtre reprĂ©sentĂ©e par un tenseur diagonal dont les composantes sont fonction de la frĂ©quence du CMR et de la concentration des NPM.Dans cette thĂšse, le transport de scalaires dans des ferrofluides / ferrogels est Ă©tudiĂ© thĂ©oriquement et expĂ©rimentalement. L’intĂ©rĂȘt principal est de quantifier expĂ©rimentalement le processus de transport de masse dans des ferrofluides / ferrogels exposĂ©s Ă  un champ magnĂ©tique externe et de comprendre les mĂ©canismes sous-jacents Ă  ces processus Ă  la lumiĂšre de simulations ferrohydrodynamiques (FHD). Nous visons Ă©galement Ă  utiliser les phĂ©nomĂšnes de transport amĂ©liorĂ©s, identifiĂ©s dans les ferrofluides pour des applications de gĂ©nie de la rĂ©action chimique, par le biais d'Ă©tudes expĂ©rimentales sur le mĂ©lange / micromĂ©lange en micro-canal. L’introduction prĂ©sente les principes de base de la dynamique des ferrofluides et des nanoparticules magnĂ©tiques (NPM) du point de vue de la mĂ©canique des fluides et de la physique des colloĂŻdes. Le cadre de ferrohydrodynamique, englobant les Ă©quations du mouvement des ferrofluides en relation avec la relaxation magnĂ©tique, y est expliquĂ©. La littĂ©rature rĂ©cente pertinente au transport de scalaires et au mĂ©lange dans les ferrofluides est examinĂ©e et les mĂ©canismes d'intensification de transport de masse dans le ferrofluides excitĂ©s par divers types de champs magnĂ©tiques sont discutĂ©s. Le premiĂšre chapitre prĂ©sente des observations expĂ©rimentales et des simulations numĂ©riques sur le transport de scalaires dans un ferrofluide de type Brownien au repos mais soumis Ă  un champ magnĂ©tique rotatif (CMR). Les expĂ©riences de transport de masse ont Ă©tĂ© conduites dans un mĂ©langeur capillaire en T excitĂ© transversalement par un champ magnĂ©tique uniforme. Une augmentation significative du transport de masse a Ă©tĂ© observĂ©e en prĂ©sence de CMR dans une direction normale Ă  l'axe de rotation du champ magnĂ©tique. Un tel contrĂŽle directionnel par CMR a permis de mettre en Ă©vidence le caractĂšre anisotrope du flux de masse puisque la diffusion molĂ©culaire Ă©tait le seul mĂ©canisme de transport agissant dans une direction parallĂšle Ă  l'axe du capillaire. Le rĂŽle de l'advection du ferrofluide induite par CMR (Ă©coulement spin-up) quant Ă  l'amĂ©lioration du transport de masse a Ă©tĂ© examinĂ© Ă  la lumiĂšre de la solution de l'Ă©quation d’advection-diffusion et de la comparaison des prĂ©dictions numĂ©riques de FHD avec les rĂ©sultats expĂ©rimentaux. Une analyse comparative systĂ©matique des simulations numĂ©riques par rapport aux observations expĂ©rimentales a rĂ©vĂ©lĂ© que la diffusivitĂ© effective dans le ferrofluide peut ĂȘtre reprĂ©sentĂ©e par un tenseur diagonal dont les composantes sont fonction de la frĂ©quence du CMR et de la concentration des NPM. Dans le deuxiĂšme chapitre, nous avons exploitĂ© le concept de diffusion effective anormale anisotrope dans les ferrofluides pour expliquer les variations de la dispersion axiale observĂ©es expĂ©rimentalement pour un Ă©coulement de Poiseuille en prĂ©sence de CMR. Les rĂ©sultats expĂ©rimentaux ont montrĂ© que la distribution des temps de sĂ©jour (DTS) en prĂ©sence de CMR est moins asymĂ©trique avec un temps de percĂ©e de plus en plus retardĂ© lorsque la frĂ©quence de CMR et/ou la concentration en nanoparticules magnĂ©tiques augmente(nt). La solution de l'Ă©quation d'advection-diffusion couplĂ©e aux Ă©quations de transport de quantitĂ© de mouvement sous champ magnĂ©tique rotatif signale une faible contribution de l'advection dans le phĂ©nomĂšne observĂ©. Les simulations numĂ©riques ont Ă©galement montrĂ© que la rĂ©duction de la dispersion axiale Ă©tait le rĂ©sultat d'une diffusivitĂ© effective anisotrope anormale dans le ferrofluide suggĂ©rant une Ă©chelle de mĂ©lange de l’ordre de quelques nanomĂštres dictĂ©e par l’effet de la rotation du champ magnĂ©tique sur la matrice liquide porteuse non-magnĂ©tique des NPM. Dans le troisiĂšme chapitre, les propriĂ©tĂ©s de transport de masse du ferrofluide identifiĂ©es ont ensuite Ă©tĂ© examinĂ©es pour des applications de mĂ©lange et de micromĂ©lange via des techniques rĂ©actionnelles. Une Ă©tude comparative a Ă©tĂ© menĂ©e pour Ă©valuer l'efficacitĂ© du mĂ©lange entre des fluides magnĂ©tiques et non magnĂ©tiques dans un mĂ©langeur de type T capillaire, cylindrique et soumis Ă  des champs magnĂ©tiques statique (CMS), oscillant (CMO) et rotatif. En utilisant la rĂ©action modĂšle de Villermaux-Dushman, nous avons mis en Ă©vidence la sensibilitĂ© de la sĂ©lectivitĂ© de cette rĂ©action au micromĂ©lange et au transfert de masse au niveau molĂ©culaire. Les rĂ©sultats ont montrĂ© une rĂ©duction substantielle de la rĂ©sistance au transport Ă  l’échelle nanomĂ©trique avec des effets mesurables sur la distribution des produits lorsque le mĂ©lange est stimulĂ© par un cham magnĂ©tique rotatif. Dans le chapitre quatre, nous Ă©tendons le concept de mĂ©lange NPM/CMR aux ferrogels, prĂ©parĂ©s en ensemençant des (dipĂŽles durs) nanoparticules de cobalt-ferrite dans un hydrogel de polyacrylamide. L'analyse quantitative des donnĂ©es d’aimantation a rĂ©vĂ©lĂ© l'existence de NPM hydrodynamiquement libres, donc sensibles Ă  la relaxation brownienne, ainsi que des NPM mĂ©caniquement bloquĂ©es dans la structure du ferrogel. Un ferrogel contenant des MNP hydrodynamiquement libres engendre des diffusivitĂ©s effectives d’un solutĂ© passif largement supĂ©rieures Ă  la diffusion molĂ©culaire intrinsĂšque mesurĂ©e pour le mĂȘme solutĂ© au sein de la structure de ferrogel en absence de champ magnĂ©tique rotatif. Les rĂ©sultats expĂ©rimentaux et thĂ©oriques de cette thĂšse pourraient ouvrir la voie Ă  l’utilisation de MNP/ferrofluide stimulĂ©s par champ magnĂ©tique pour la conception et le dĂ©veloppement de systĂšmes micro-fluidiques et de matĂ©riaux magnĂ©tiques multifonctionnels dotĂ©s de propriĂ©tĂ©s de transport contrĂŽlables Ă  distance.Dans le deuxiĂšme chapitre, nous avons exploitĂ© le concept de diffusion effective anormale anisotrope dans les ferrofluides pour expliquer les variations de la dispersion axiale observĂ©es expĂ©rimentalement pour un Ă©coulement de Poiseuille en prĂ©sence de CMR. Les rĂ©sultats expĂ©rimentaux ont montrĂ© que la distribution des temps de sĂ©jour (DTS) en prĂ©sence de CMR est moins asymĂ©trique avec un temps de percĂ©e de plus en plus retardĂ© lorsque la frĂ©quence de CMR et/ou la concentration en nanoparticules magnĂ©tiques augmente(nt). La solution de l'Ă©quation d'advection-diffusion couplĂ©e aux Ă©quations de transport de quantitĂ© de mouvement sous champ magnĂ©tique rotatif signale une faible contribution de l'advection dans le phĂ©nomĂšne observĂ©. Les simulations numĂ©riques ont Ă©galement montrĂ© que la rĂ©duction de la dispersion axiale Ă©tait le rĂ©sultat d'une diffusivitĂ© effective anisotrope anormale dans le ferrofluide suggĂ©rant une Ă©chelle de mĂ©lange de l’ordre de quelques nanomĂštres dictĂ©e par l’effet de la rotation du champ magnĂ©tique sur la matrice liquide porteuse non-magnĂ©tique des NPM.. Dans le troisiĂšme chapitre, les propriĂ©tĂ©s de transport de masse du ferrofluide identifiĂ©es ont ensuite Ă©tĂ© examinĂ©es pour des applications de mĂ©lange et de micromĂ©lange via des techniques rĂ©actionnelles. Une Ă©tude comparative a Ă©tĂ© menĂ©e pour Ă©valuer l'efficacitĂ© du mĂ©lange entre des fluides magnĂ©tiques et non magnĂ©tiques dans un mĂ©langeur de type T capillaire, cylindrique et soumis Ă  des champs magnĂ©tiques statique (CMS), oscillant (CMO) et rotatif. En utilisant la rĂ©action modĂšle de Villermaux-Dushman, nous avons mis en Ă©vidence la sensibilitĂ© de la sĂ©lectivitĂ© de cette rĂ©action au micromĂ©lange et au transfert de masse au niveau molĂ©culaire. Les rĂ©sultats ont montrĂ© une rĂ©duction substantielle de la rĂ©sistance au transport Ă  l’échelle nanomĂ©trique avec des effets mesurables sur la distribution des produits lorsque le mĂ©lange est stimulĂ© par un cham magnĂ©tique rotatif. Dans le chapitre quatre, nous Ă©tendons le concept de mĂ©lange NPM/CMR aux ferrogels, prĂ©parĂ©s en ensemençant des (dipĂŽles durs) nanoparticules de cobalt-ferrite dans un hydrogel de polyacrylamide. L'analyse quantitative des donnĂ©es d’aimantation a rĂ©vĂ©lĂ© l'existence de NPM hydrodynamiquement libres, donc sensibles Ă  la relaxation brownienne, ainsi que des NPM mĂ©caniquement bloquĂ©es dans la structure du ferrogel. Un ferrogel contenant des MNP hydrodynamiquement libres engendre des diffusivitĂ©s effectives d’un solutĂ© passif largement supĂ©rieures Ă  la diffusion molĂ©culaire intrinsĂšque mesurĂ©e pour le mĂȘme solutĂ© au sein de la structure de ferrogel en absence de champ magnĂ©tique rotatif. Les rĂ©sultats expĂ©rimentaux et thĂ©oriques de cette thĂšse pourraient ouvrir la voie Ă  l’utilisation de MNP/ferrofluide stimulĂ©s par champ magnĂ©tique pour la conception et le dĂ©veloppement de systĂšmes micro-fluidiques et de matĂ©riaux magnĂ©tiques multifonctionnels dotĂ©s de propriĂ©tĂ©s de transport contrĂŽlables Ă  distance.The solution of advection-diffusion equation coupled to FHD equations of motion predicted weak contribution of advection in the observed phenomenon. The numerical simulations showed that the reduced axial dispersion is the outcome of anomalous anisotropic effective diffusivity in ferrofluid exposed to external uniform RMF. In chapter three, the identified mass transport properties of ferrofluid were further examined for (micro)-mixing applications in reaction engineering. A comparative study was conducted to evaluate the mixing efficiency between magnetic and non-magnetic fluids in a cylindrical capillary T-type mixer subjected to static (SMF), oscillating (OMF) and rotating magnetic fields. By using a probe reaction set (the Villermaux-Dushman reaction) with sensitive selectivity to mass transfer rate, mixing at molecular level was also investigated. The results showed substantial elimination of mass transfer rate influence on product distribution of chemical reactions when the mixing process is intensified with RMF. In chapter four, we extend the concept of mixing by MNP/RMF to ferrogels, prepared by seeding hard-dipole cobalt-ferrite MNP in polyacrylamide hydrogels. Quantitative analysis of magnetization data indicated the existence of hydrodynamically free MNPs, susceptible to Brownian relaxation along with mechanically blocked ones. A ferrogel consisting of hydrodynamically free MNP exhibits effective diffusivities higher than the intrinsic molecular diffusion of passive solute within the ferrogel structure. The experimental and theoretical findings in this thesis may open the way for application of magnetic field-stimulated MNP/ferrofluid for design and development of microfluidic systems and multifunctional magnetic materials with remote-controllable transport properties.In this PhD thesis, the transport of scalars in ferrofluids/ferrogels is theoretically and experimentally studied. The major interest is to experimentally quantify mass transport process in ferrofluids/ferrogels exposed to external magnetic fields and also to understand the mechanisms underlying the observed enhanced mass transport processes through ferrohydrodynamic (FHD) simulations. We also aim at utilizing the identified enhanced transport phenomena in ferrofluids for reaction engineering applications through experimental studies on mixing/micromixing in microchannels. The introduction presents the basic principles and fundamentals of ferrofluid and magnetic nanoparticles (MNP) dynamics from fluid mechanics and colloidal physics perspectives. The framework of ferrohydrodynamics (FHD), encompassing the ferrofluid equations of motion in connection with magnetic relaxation is explained. The recent literature relevant to the subject of scalar transport and mixing in ferrofluids is reviewed and the mechanisms of rate intensification of mass transport in ferrofluid subjected to various types of magnetic fields are discussed. The first chapter reports experimental observations and numerical simulations on the transport of scalars in quiescent Brownian ferrofluids under rotating magnetic field (RMF). The mass transport experiments were conducted in a cylindrical capillary T-mixer in presence/absence of transverse uniform RMF. Significant enhancement in mass transport was observed in presence of RMF in a direction normal to rotation axis of magnetic field. RMF directional control of mass flux enhancement was anisotropic since the molecular diffusion was the only detected transport mechanism in a direction parallel to the capillary axis. The significance of RMF driven ferrofluid advection (spin-up flow) in mass transport enhancement was examined in the light of the solution of advection-diffusion equation and subsequent comparison of numerical predictions with experimental results. Systematic analysis of numerical simulations compared to experimental observations unveiled that the effective diffusivity in ferrofluid consists of a diagonal tensor whose components are a function of RMF frequency and MNP concentration. In the second chapter, we exploited the concept of anisotropic anomalous effective diffusion in ferrofluids to explain the experimentally observed variations of axial dispersion in ferrofluid capillary Poiseuille flow in presence of external RMF. The experimental results showed that residence time distribution (RTD) in presence of RMF is more symmetric with retarded breakthrough time when frequency of RMF and magnetic nanoparticles (MNP) concentration are increased

    Liquid-liquid Dispersion in Batch and In-line Rotor-Stator Mixers

    Get PDF
    This two-part dissertation investigates the behavior of batch and in-line rotor-stator mixers separately. In the first study, water was dispersed into viscous oil using a batch Silverson L4R rotor-stator mixer. The flow regime was determined by reference to published Power number data and by qualitative differences in drop size data. Drop breakup in laminar flow was analyzed by comparison to published single drop breakup experiments in idealized flow fields. The breakup mechanism in laminar flow was similar to that for simple shear flow and equal to about twice the nominal shear rate in the rotor-stator gap. Drop breakup in turbulent flow followed a mechanistic correlation for mean drop size for drops less than the Kolmogorov microscale, but still large enough that both inertial and viscous effects were manifest. Surfactants decreased drop size with Marangoni effects observed near the CMC for laminar, but not for turbulent flow. Below phase fractions of 0.05, d32 increased in a log-linear fashion with phase fraction for all conditions tested including: laminar and turbulent flow, presence of surfactant, and hydrophobically treated high-shear surfaces. The significant effect of phase fraction was caused by the flow structure being locally laminar near the drops, and was permitted by sufficiently low fluid viscosities which promoted film drainage. Above phase fractions of 0.1, drop sizes plateaued. This was attributed to decreasing coalescence rate and efficiency, along with increasing breakup. In the second study, the power consumption of an IKA 2000/4 in-line pilot scale rotor-stator mixer was measured with a purpose-built torque meter. The power spent by the mixer on pumping was insignificant compared to viscous dissipation. A constant power number was obtained for turbulent flow using constant power per stage with an empirically determined effective diameter for each generator type. For conditions where mean drop size was close to equilibrium, as determined by flowrate independence, previously reported mean drop size data were calculated using the well-known inertial subrange scaling law along with the power draw measurements of the present study. The maximum local energy dissipation rate was found to be nine times the average energy dissipation rat

    Modeling of the Flow Dynamics through Incompressible Porous Media in Solid-Liquid Filtration

    Get PDF
    Solid-liquid filtration is a long-standing engineering practice and has been widely used in the chemical, process and mineral industries. Current models are semi-empirical in nature; thus, they require significant experimental and/or computational resources in order to determine the empirical quantities. In contrast, this dissertation provides a model to predict the dynamic behavior for both the liquid and solid phase of a filtration process without the requirement of empirical parameters. Instead, the model relies solely on the to-be-captured particle size distribution of contaminants as well as the pore size distribution of the filtration media. The new algorithm is capable of describing filtration based on both “steric” capture of contaminants as well as capture within dead-end pores in the material. This dissertation shows the performance of the model in modeling beds comprised of high void fraction materials (diatomaceous earth) that is used for the removal of multi-modal mixtures of contaminant. By formally accounting for the complex pore size distribution, the predict flow dynamics that are much closer to experimental results than the predictions of the traditional Kozeny-Carmen (K-C) model and show that this approach is viable for both statically formed and evolving (dynamic) beds. In an effort to understand the relationship between flow dynamics and pore size distribution more fully, a dynamic filter cake model is proposed that continuously modifies the pore size distribution as contaminants (polydispere spheres) are deposited. This dissertation also describes a simulation model capable of describing the capture of spherical particles within dead-end pores. A 3D discrete element method-lattice Boltzmann method (DEM-LBM) coupling approach is applied to investigate the particle capture under conditions of different particle size and pore structures. Both the pressure drop and the fluid density are examined to indicate this capture performance. The predicted flow dynamics of this new model match the dynamic experimental results remarkably well, setting the stage for a priori prediction of filtration times, flow-rates, particle capture, and pressure requirements from simple measurements of the size distribution of both the filter media pores as well as the contaminant particles/droplets

    Volume II: Mining Innovation

    Get PDF
    Contemporary exploitation of natural raw materials by borehole, opencast, underground, seabed, and anthropogenic deposits is closely related to, among others, geomechanics, automation, computer science, and numerical methods. More and more often, individual fields of science coexist and complement each other, contributing to lowering exploitation costs, increasing production, and reduction of the time needed to prepare and exploit the deposit. The continuous development of national economies is related to the increasing demand for energy, metal, rock, and chemical resources. Very often, exploitation is carried out in complex geological and mining conditions, which are accompanied by natural hazards such as rock bursts, methane, coal dust explosion, spontaneous combustion, water, gas, and temperature. In order to conduct a safe and economically justified operation, modern construction materials are being used more and more often in mining to support excavations, both under static and dynamic loads. The individual production stages are supported by specialized computer programs for cutting the deposit as well as for modeling the behavior of the rock mass after excavation in it. Currently, the automation and monitoring of the mining works play a very important role, which will significantly contribute to the improvement of safety conditions. In this Special Issue of Energies, we focus on innovative laboratory, numerical, and industrial research that has a positive impact on the development of safety and exploitation in mining

    The Application of Fluorescence Lifetime Imaging Microscopy to Quantitatively Map Mixing and Temperature in Microfluidic Systems

    Get PDF
    The technique of Fluorescence Lifetime Imaging Microscopy (FLIM) has been employed to quantitatively and spatially map the fluid composition and temperature within microfluidic systems. A molecular probe with a solvent-sensitive fluorescence lifetime has been exploited to investigate and map the diffusional mixing of fluid streams under laminar flow conditions within a microfluidic device. Using FLIM, the fluid composition is mapped with high quantification and spatial resolution to assess the extent of mixing. This technique was extended to quantitatively evaluate the mixing efficiency of a range of commercial microfluidic mixers employing various mixing strategies, including the use of obstacles fabricated within the channels. A fluorescently labelled polymer has been investigated as a new probe for mapping temperature within microfluidic devices using FLIM. Time Correlated Single Photon Counting (TCSPC) measurements showed that the average fluorescence lifetime displayed by an aqueous solution of the polymer depended strongly on temperature, increasing from 3 ns to 13.5 ns between 23 and 38 oC. This effect was exploited using FLIM to provide high spatial resolution temperature mapping with sub-degree temperature resolution within microfluidic devices. A temperature-sensitive, water-soluble derivative of the rhodamine B fluorophore, effective over a wide dynamic temperature range (25 to 91 oC) has been used to map the temperature distribution during the mixing of fluid streams of different temperatures within a microchannel. In addition, this probe was employed to quantify the fluid temperature in a prototype microfluidic system for DNA amplification. FLIM has been demonstrated to provide a superior approach to the imaging within microfluidic systems over other commonly used techniques, such as fluorescence intensity and colourimetric imaging
    • 

    corecore