96 research outputs found

    Sharing delay information in service systems: a literature survey

    Get PDF
    Service providers routinely share information about upcoming waiting times with their customers, through delay announcements. The need to effectively manage the provision of these announcements has led to a substantial growth in the body of literature which is devoted to that topic. In this survey paper, we systematically review the relevant literature, summarize some of its key ideas and findings, describe the main challenges that the different approaches to the problem entail, and formulate research directions that would be interesting to consider in future work

    On the modelling and performance measurement of service networks with heterogeneous customers

    Get PDF
    Service networks are common throughout the modern world, yet understanding how their individual services effect each other and contribute to overall system performance can be difficult. An important metric in these systems is the quality of service. This is an often overlooked measure when modelling and relates to how customers are affected by a service. Presented is a novel perspective for evaluating the performance of multi-class queueing networks through a combination of operational performance and service quality—denoted the “flow of outcomes”. Here, quality is quantified by customers moving between or remaining in classes as a result of receiving service or lacking service. Importantly, each class may have different flow parameters, hence the positive/negative impact of service quality on the system’s operational performance is captured. A fluid–diffusion approximation for networks of stochastic queues is used since it allows for several complex flow dynamics: the sequential use of multiple services; abandonment and possible rejoin; reuse of the same service; multiple customers classes; and, class and time dependent parameters. The scalability of the approach is a significant benefit since, the modelled systems may be relatively large, and the included flow dynamics may render the system analytically intractable or computationally burdensome. Under the right conditions, this method provides a framework for quickly modelling large time-dependent systems. This combination of computational speed and the “flow of outcomes” provides new avenues for the analysis of multi-class service networks where both service quality and operational efficiency interact

    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016

    Get PDF
    International audienceThis booklet contains the proceedings of the second European Conference in Queueing Theory (ECQT) that was held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT, Toulouse, France. ECQT is a biannual event where scientists and technicians in queueing theory and related areas get together to promote research, encourage interaction and exchange ideas. The spirit of the conference is to be a queueing event organized from within Europe, but open to participants from all over the world. The technical program of the 2016 edition consisted of 112 presentations organized in 29 sessions covering all trends in queueing theory, including the development of the theory, methodology advances, computational aspects and applications. Another exciting feature of ECQT2016 was the institution of the Takács Award for outstanding PhD thesis on "Queueing Theory and its Applications"

    Use of network analysis, and fluid and diffusion approximations for stochastic queueing networks to understand flows of referrals and outcomes in community health care

    Get PDF
    Community services are fundamental in the delivery of health care, providing local care close to or in patient homes. However, planning, managing and evaluating these services can be difficult. One stand out challenge is how these services may be organised to provide coordinated care given their physical distribution, patients using multiple services, and the increasing use of these services by patients with differing needs. This is complicated by a lack of comparable measures for evaluating quality across differing community services. Presented in this thesis is work that I conducted, alongside the North East London Foundation Trust, to understand referrals and the use of outcome data within community services through data visualisation and mathematical modelling. Firstly, I applied several data visualisations, building from a network analysis, to aid the design of a single point of access for referrals into community services - helping to understand patterns of referrals and patient use. Of interest were concurrent uses of services, whether common patterns existed and how multiple referrals occurred over time. This highlighted important dynamics to consider in modelling these services. Secondly, I developed a patient flow model, extending fluid and diffusion approximations of stochastic queueing systems to include complex flow dynamics such as re-entrant patients and the use of multiple services in sequence. Patient health is also incorporated into the model by using states that patients may move between throughout their care, which are used to model the differential impact of care. I also produced novel methods for allocating servers across parallel queues and patient groups. Finally, I developed the concept of ``the flow of outcomes'' - a measure of how individual services contribute to the output of patients in certain health states over time - to provide operational and clinical insight into the performance of a network of services

    Downstream Bandwidth Management for Emerging DOCSIS-based Networks

    Get PDF
    In this dissertation, we consider the downstream bandwidth management in the context of emerging DOCSIS-based cable networks. The latest DOCSIS 3.1 standard for cable access networks represents a significant change to cable networks. For downstream, the current 6 MHz channel size is replaced by a much larger 192 MHz channel which potentially can provide data rates up to 10 Gbps. Further, the current standard requires equipment to support a relatively new form of active queue management (AQM) referred to as delay-based AQM. Given that more than 50 million households (and climbing) use cable for Internet access, a clear understanding of the impacts of bandwidth management strategies used in these emerging networks is crucial. Further, given the scope of the change provided by emerging cable systems, now is the time to develop and introduce innovative new methods for managing bandwidth. With this motivation, we address research questions pertaining to next generation of cable access networks. The cable industry has had to deal with the problem of a small number of subscribers who utilize the majority of network resources. This problem will grow as access rates increase to gigabits per second. Fundamentally this is a problem on how to manage data flows in a fair manner and provide protection. A well known performance issue in the Internet, referred to as bufferbloat, has received significant attention recently. High throughput network flows need sufficiently large buffer to keep the pipe full and absorb occasional burstiness. Standard practice however has led to equipment offering very large unmanaged buffers that can result in sustained queue levels increasing packet latency. One reason why these problems continue to plague cable access networks is the desire for low complexity and easily explainable (to access network subscribers and to the Federal Communications Commission) bandwidth management. This research begins by evaluating modern delay-based AQM algorithms in downstream DOCSIS 3.0 environments with a focus on fairness and application performance capabilities of single queue AQMs. We are especially interested in delay-based AQM schemes that have been proposed to combat the bufferbloat problem. Our evaluation involves a variety of scenarios that include tiered services and application workloads. Based on our results, we show that in scenarios involving realistic workloads, modern delay-based AQMs can effectively mitigate bufferbloat. However they do not address the other problem related to managing the fairness. To address the combined problem of fairness and bufferbloat, we propose a novel approach to bandwidth management that provides a compromise among the conflicting requirements. We introduce a flow quantization method referred to as adaptive bandwidth binning where flows that are observed to consume similar levels of bandwidth are grouped together with the system managed through a hierarchical scheduler designed to approximate weighted fairness while addressing bufferbloat. Based on a simulation study that considers many system experimental parameters including workloads and network configurations, we provide evidence of the efficacy of the idea. Our results suggest that the scheme is able to provide long term fairness and low delay with a performance close to that of a reference approach based on fair queueing. A further contribution is our idea for replacing `tiered\u27 levels of service based on service rates with tiering based on weights. The application of our bandwidth binning scheme offers a timely and innovative alternative to broadband service that leverages the potential offered by emerging DOCSIS-based cable systems

    ESSAYS IN STOCHASTIC MODELING AND OPTIMIZATION

    Get PDF
    Stochastic modeling plays an important role in estimating potential outcomes where randomness or uncertainty is present. This type of modeling forecasts the probability distributions of potential outcomes by allowing for random variation in one or more inputs over time under different conditions. One of the classic topics of stochastic modeling is queueing theory.Hence, the first part of the dissertation is about a stylized queueing model motivated by paid express lanes on highways. There are two parallel, observable queues with finitely many servers: one queue has a faster service rate, but charges a fee to join, and the other is free but slow. Upon arrival, customers see the state of each queue and choose between them by comparing the respective disutility of time spent waiting, subject to random shocks. This framework encompasses both the multinomial logit and exponomial customer choice models. Using a fluid limit analysis, we give a detailed characterization of the equilibrium in this system. We show that social welfare is optimized when the express queue is exactly at (but not over) full capacity; however, in some cases, revenue is maximized by artificially cre- ating congestion in the free queue. The latter behaviour is caused by changes in the price elasticity of demand as the service capacity of the free queue fills up. The second part of the dissertation is about a new optimal experimental design for linear regression models with continuous covariates, where the expected response is interpreted as the value of the covariate vector, and an “error” occurs if a lower- valued vector is falsely identified as being better than a higher-valued one. Our design optimizes the rate at which the probability of error converges to zero using a large deviations theoretic characterization. This is the first large deviations-based optimal design for continuous decision spaces, and it turns out to be considerably simpler and easier to implement than designs that use discretization. We give a practicable sequential implementation and illustrate its empirical potential

    Control of multiclass queueing systems with abandonments and adversarial customers

    Get PDF
    This thesis considers the defensive surveillance of multiple public areas which are the open, exposed targets of adversarial attacks. We address the operational problem of identifying a real time decision-making rule for a security team in order to minimise the damage an adversary can inflict within the public areas. We model the surveillance scenario as a multiclass queueing system with customer abandonments, wherein the operational problem translates into developing service policies for a server in order to minimise the expected damage an adversarial customer can inflict on the system. We consider three different surveillance scenarios which may occur in realworld security operations. In each scenario it is only possible to calculate optimal policies in small systems or in special cases, hence we focus on developing heuristic policies which can be computed and demonstrate their effectiveness in numerical experiments. In the random adversary scenario, the adversary attacks the system according to a probability distribution known to the server. This problem is a special case of a more general stochastic scheduling problem. We develop new results which complement the existing literature based on priority policies and an effective approximate policy improvement algorithm. We also consider the scenario of a strategic adversary who chooses where to attack. We model the interaction of the server and adversary as a two-person zero-sum game. We develop an effective heuristic based on an iterative algorithm which populates a small set of service policies to be randomised over. Finally, we consider the scenario of a strategic adversary who chooses both where and when to attack and formulate it as a robust optimisation problem. In this case, we demonstrate the optimality of the last-come first-served policy in single queue systems. In systems with multiple queues, we develop effective heuristic policies based on the last-come first-served policy which incorporates randomisation both within service policies and across service policies
    • …
    corecore