1,390 research outputs found

    Separation of timescales in a two-layered network

    Full text link
    We investigate a computer network consisting of two layers occurring in, for example, application servers. The first layer incorporates the arrival of jobs at a network of multi-server nodes, which we model as a many-server Jackson network. At the second layer, active servers at these nodes act now as customers who are served by a common CPU. Our main result shows a separation of time scales in heavy traffic: the main source of randomness occurs at the (aggregate) CPU layer; the interactions between different types of nodes at the other layer is shown to converge to a fixed point at a faster time scale; this also yields a state-space collapse property. Apart from these fundamental insights, we also obtain an explicit approximation for the joint law of the number of jobs in the system, which is provably accurate for heavily loaded systems and performs numerically well for moderately loaded systems. The obtained results for the model under consideration can be applied to thread-pool dimensioning in application servers, while the technique seems applicable to other layered systems too.Comment: 8 pages, 2 figures, 1 table, ITC 24 (2012

    Diffusion approximation for a processor sharing queue in heavy traffic

    Get PDF
    Consider a single server queue with renewal arrivals and i.i.d. service times in which the server operates under a processor sharing service discipline. To describe the evolution of this system, we use a measure valued process that keeps track of the residual service times of all jobs in the system at any given time. From this measure valued process, one can recover the traditional performance processes, including queue length and workload. We show that under mild assumptions, including standard heavy traffic assumptions, the (suitably rescaled) measure valued processes corresponding to a sequence of processor sharing queues converge in distribution to a measure valued diffusion process. The limiting process is characterized as the image under an appropriate lifting map, of a one-dimensional reflected Brownian motion. As an immediate consequence, one obtains a diffusion approximation for the queue length process of a processor sharing queue

    Heavy traffic limit for a processor sharing queue with soft deadlines

    Full text link
    This paper considers a GI/GI/1 processor sharing queue in which jobs have soft deadlines. At each point in time, the collection of residual service times and deadlines is modeled using a random counting measure on the right half-plane. The limit of this measure valued process is obtained under diffusion scaling and heavy traffic conditions and is characterized as a deterministic function of the limiting queue length process. As special cases, one obtains diffusion approximations for the lead time profile and the profile of times in queue. One also obtains a snapshot principle for sojourn times.Comment: Published at http://dx.doi.org/10.1214/105051607000000014 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Simple models of network access, with applications to the design of joint rate and admission control

    Get PDF
    At the access to networks, in contrast to the core, distances and feedback delays, as well as link capacities are small, which has network engineering implications that are investigated in this paper. We consider a single point in the access network which multiplexes several bursty users. The users adapt their sending rates based on feedback from the access multiplexer. Important parameters are the user's peak transmission rate p, which is the access line speed, the user's guaranteed minimum rate r, and the bound ε on the fraction of lost data. Two feedback schemes are proposed. In both schemes the users are allowed to send at rate p if the system is relatively lightly loaded, at rate r during periods of congestion, and at a rate between r and p, in an intermediate region. For both feedback schemes we present an exact analysis, under the assumption that the users' job sizes and think times have exponential distributions. We use our techniques to design the schemes jointly with admission control, i.e., the selection of the number of admissible users, to maximize throughput for given p, r, and ε. Next we consider the case in which the number of users is large. Under a specific scaling, we derive explicit large deviations asymptotics for both models. We discuss the extension to general distributions of user data and think times

    Convergence to Equilibrium States for Fluid Models of Many-server Queues with Abandonment

    Full text link
    Fluid models have become an important tool for the study of many-server queues with general service and patience time distributions. The equilibrium state of a fluid model has been revealed by Whitt (2006) and shown to yield reasonable approximations to the steady state of the original stochastic systems. However, it remains an open question whether the solution to a fluid model converges to the equilibrium state and under what condition. We show in this paper that the convergence holds under a mild condition. Our method builds on the framework of measure-valued processes developed in Zhang (2013), which keeps track of the remaining patience and service times

    Multiplexing regulated traffic streams: design and performance

    Get PDF
    The main network solutions for supporting QoS rely on traf- fic policing (conditioning, shaping). In particular, for IP networks the IETF has developed Intserv (individual flows regulated) and Diffserv (only ag- gregates regulated). The regulator proposed could be based on the (dual) leaky-bucket mechanism. This explains the interest in network element per- formance (loss, delay) for leaky-bucket regulated traffic. This paper describes a novel approach to the above problem. Explicitly using the correlation structure of the sources’ traffic, we derive approxi- mations for both small and large buffers. Importantly, for small (large) buffers the short-term (long-term) correlations are dominant. The large buffer result decomposes the traffic stream in a stream of constant rate and a periodic impulse stream, allowing direct application of the Brownian bridge approximation. Combining the small and large buffer results by a concave majorization, we propose a simple, fast and accurate technique to statistically multiplex homogeneous regulated sources. To address heterogeneous inputs, we present similarly efficient tech- niques to evaluate the performance of multiple classes of traffic, each with distinct characteristics and QoS requirements. These techniques, applica- ble under more general conditions, are based on optimal resource (band- width and buffer) partitioning. They can also be directly applied to set GPS (Generalized Processor Sharing) weights and buffer thresholds in a shared resource system

    Coupled queues with customer impatience

    Get PDF
    Motivated by assembly processes, we consider a Markovian queueing system with multiple coupled queues and customer impatience. Coupling means that departures from all constituent queues are synchronised and that service is interrupted whenever any of the queues is empty and only resumes when all queues are non-empty again. Even under Markovian assumptions, the state space grows exponentially with the number of queues involved. To cope with this inherent state space explosion problem, we investigate performance by means of two numerical approximation techniques based on series expansions, as well as by deriving the fluid limit. In addition, we provide closed-form expressions for the first terms in the series expansion of the mean queue content for the symmetric coupled queueing system. By an extensive set of numerical experiments, we show that the approximation methods complement each other, each one being accurate in a particular subset of the parameter space. (C) 2017 Elsevier B.V. All rights reserved

    Fluid Models of Many-server Queues with Abandonment

    Full text link
    We study many-server queues with abandonment in which customers have general service and patience time distributions. The dynamics of the system are modeled using measure- valued processes, to keep track of the residual service and patience times of each customer. Deterministic fluid models are established to provide first-order approximation for this model. The fluid model solution, which is proved to uniquely exists, serves as the fluid limit of the many-server queue, as the number of servers becomes large. Based on the fluid model solution, first-order approximations for various performance quantities are proposed
    corecore