55 research outputs found

    Serial-batch scheduling – the special case of laser-cutting machines

    Get PDF
    The dissertation deals with a problem in the field of short-term production planning, namely the scheduling of laser-cutting machines. The object of decision is the grouping of production orders (batching) and the sequencing of these order groups on one or more machines (scheduling). This problem is also known in the literature as "batch scheduling problem" and belongs to the class of combinatorial optimization problems due to the interdependencies between the batching and the scheduling decisions. The concepts and methods used are mainly from production planning, operations research and machine learning

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Deterministic Assembly Scheduling Problems: A Review and Classification of Concurrent-Type Scheduling Models and Solution Procedures

    Get PDF
    Many activities in industry and services require the scheduling of tasks that can be concurrently executed, the most clear example being perhaps the assembly of products carried out in manufacturing. Although numerous scientific contributions have been produced on this area over the last decades, the wide extension of the problems covered and the lack of a unified approach have lead to a situation where the state of the art in the field is unclear, which in turn hinders new research and makes translating the scientific knowledge into practice difficult. In this paper we propose a unified notation for assembly scheduling models that encompass all concurrent-type scheduling problems. Using this notation, the existing contributions are reviewed and classified into a single framework, so a comprehensive, unified picture of the field is obtained. In addition, a number of conclusions regarding the state of the art in the topic are presented, as well as some opportunities for future research.Ministerio de Ciencia e Innovación español DPI2016-80750-

    Progress in Material Handling Research: 2010

    Get PDF
    Table of Content

    New Solution Approaches for Scheduling Problems in Production and Logistics

    Get PDF
    The current cumulative PhD thesis consists of six papers published in/submitted to scientific journals. The focus of the thesis is to develop new solution approaches for scheduling problems encountering in manufacturing as well as in logistics. The thesis is divided into two parts: “ma-chine scheduling in production” and “scheduling problems in logistics” each of them consisting three papers. To have most comprehensive overview of the topic of machine scheduling, the first part of the thesis starts with two systematic review papers, which were conducted on tertiary level (i.e., re-viewing literature reviews). Both of these papers analyze a sample of around 130 literature re-views on machine scheduling problems. The first paper use a subjective quantitative approach to evaluate the sample, while the second papers uses content analysis which is an objective quanti-tative approach to extract meaningful information from massive data. Based on the analysis, main attributes of scheduling problems in production are identified and are classified into sever-al categories. Although the focus of both these papers are set to review scheduling problems in manufacturing, the results are not restricted to machine scheduling problem and the results can be extended to the second part of the thesis. General drawbacks of literature reviews are identi-fied and several suggestions for future researches are also provided in both papers. The third paper in the first part of the thesis presents the results of 105 new heuristic algorithms developed to minimize total flow time of a set of jobs in a flowshop manufacturing environ-ment. The computational experiments confirm that the best heuristic proposed in this paper im-proves the average error of best existing algorithm by around 25 percent. The first paper in second part is focused on minimizing number of electric tow-trains responsi-ble to deliver spare parts from warehouse to the production lines. Together with minimizing number of these electric vehicles the paper is also focused to maximize the work load balance among the drivers of the vehicles. For this problem, after analyzing the complexity of the prob-lem, an opening heuristic, a mixed integer linear programing (MILP) model and a taboo-search neighborhood search approach are proposed. Several managerial insights, such as the effect of battery capacity on the number of required vehicles, are also discussed. The second paper of the second part addresses the problem of preparing unit loaded devices (ULDs) at air cargos to be loaded latter on in planes. The objective of this problem is to mini-mize number of workers required in a way that all existing flight departure times are met and number of available places for building ULDs is not violated. For this problem, first, a MILP model is proposed and then it is boosted with a couple of heuristics which enabled the model to find near optimum solutions in a matter of 10 seconds. The paper also investigates the inherent tradeoff between labor and space utilization as well as the uncertainty about the volume of cargo to be processed. The last paper of the second part proposes an integrated model to improve both ergonomic and economic performance of manual order picking process by rotating pallets in the warehouse. For the problem under consideration in this paper, we first present and MILP model and then pro-pose a neighborhood search based on simulated annealing. The results of numerical experiment indicate that selectively rotating pallets may reduce both order picking time as well as the load on order picker, which leads to a quicker and less risky order picking process

    Aproximações heurísticas para um problema de escalonamento do tipo flexible job-shop

    Get PDF
    Mestrado em Engenharia e Gestão IndustrialEste trabalho aborda um novo tipo de problema de escalonamento que pode ser encontrado em várias aplicações do mundo-real, principalmente na indústria transformadora. Em relação à configuração do shop floor, o problema pode ser classificado como flexible job-shop, onde os trabalhos podem ter diferentes rotas ao longo dos recursos e as suas operações têm um conjunto de recursos onde podem ser realizadas. Outras características de processamento abordadas são: datas possíveis de início, restrições de precedência (entre operações de um mesmo trabalho ou entre diferentes trabalhos), capacidade dos recursos (incluindo paragens, alterações na capacidade e capacidade infinita) e tempos de setup (que podem ser dependentes ou independentes da sequência). O objetivo é minimizar o número total de trabalhos atrasados. Para resolver o novo problema de escalonamento proposto um modelo de programação linear inteira mista é apresentado e novas abordagens heurísticas são propostas. Duas heurísticas construtivas, cinco heurísticas de melhoramento e duas metaheurísticas são propostas. As heurísticas construtivas são baseadas em regras de ordenação simples, onde as principais diferenças entre elas dizem respeito às regras de ordenação utilizadas e à forma de atribuir os recursos às operações. Os métodos são designados de job-by-job (JBJ), operation-by-operation (OBO) e resource-by-resource (RBR). Dentro das heurísticas de melhoramento, a reassign e a external exchange visam alterar a atribuição dos recursos, a internal exchange e a swap pretendem alterar a sequência de operações e a reinsert-reassign é focada em mudar, simultaneamente, ambas as partes. Algumas das heurísticas propostas são usadas em metaheurísticas, nomeadamente a greedy randomized adaptive search procedure (GRASP) e a iterated local search (ILS). Para avaliar estas abordagens, é proposto um novo conjunto de instâncias adaptadas de problemas de escalonamento gerais do tipo flexible job-shop. De todos os métodos, o que apresenta os melhores resultados é o ILS-OBO obtendo melhores valores médios de gaps em tempos médios inferiores a 3 minutos.This work addresses a new type of scheduling problem which can be found in several real-world applications, mostly in manufacturing. Regarding shop floor configuration, the problem can be classified as flexible job-shop, where jobs can have different routes passing through resources and their operations have a set of eligible resources in which they can be performed. The processing characteristics addressed are release dates, precedence constraints (either between operations of the same job or between different jobs), resources capacity (including downtimes, changes in capacity, and infinite capacity), and setup times, which can be sequence-dependent or sequence-independent. The objective is to minimise the total number of tardy jobs. To tackle the newly proposed flexible job-shop scheduling problem (FJSP), a mixed integer linear programming model (MILP) is presented and new heuristic approaches are put forward. Three constructive heuristics, five improvement heuristics, and two metaheuristics are proposed. The constructive heuristics are based on simple dispatching rules, where the main differences among them concern the used dispatching rules and the way resources are assigned. The methods are named job-by-job (JBJ), operation-by-operation (OBO) and resource-by-resource (RBR). Within improvement heuristics, reassign and external exchange aim to change the resources assignment, internal exchange and swap intend changing the operations sequence, and reinsert-reassign is focused in simultaneously changing both parts. Some of the proposed heuristics are used within metaheuristic frameworks, namely greedy randomized adaptive search procedure (GRASP) and iterative local search (ILS). In order to evaluate these approaches, a new set of benchmark instances adapted from the general FJSP is proposed. Out of all methods, the one which shows the best average results is ILS-OBO obtaining the best average gap values in average times lower than 3 minutes
    corecore