33 research outputs found

    Heuristics and metaheuristics for heavily constrained hybrid flowshop problems

    Full text link
    Due to the current trends in business as the necessity to have a large catalogue of products, orders that increase in frequency but not in size, globalisation and a market that is increasingly competitive, the production sector faces an ever harder economical environment. All this raises the need for production scheduling with maximum efficiency and effectiveness. The first scientific publications on production scheduling appeared more than half a century ago. However, many authors have recognised a gap between the literature and the industrial problems. Most of the research concentrates on optimisation problems that are actually a very simplified version of reality. This allows for the use of sophisticated approaches and guarantees in many cases that optimal solutions are obtained. Yet, the exclusion of real-world restrictions harms the applicability of those methods. What the industry needs are systems for optimised production scheduling that adjust exactly to the conditions in the production plant and that generates good solutions in very little time. This is exactly the objective in this thesis, that is, to treat more realistic scheduling problems and to help closing the gap between the literature and practice. The considered scheduling problem is called the hybrid flowshop problem, which consists in a set of jobs that flow through a number of production stages. At each of the stages, one of the machines that belong to the stage is visited. A series of restriction is considered that include the possibility to skip stages, non-eligible machines, precedence constraints, positive and negative time lags and sequence dependent setup times. In the literature, such a large number of restrictions has not been considered simultaneously before. Briefly, in this thesis a very realistic production scheduling problem is studied. Various optimisation methods are presented for the described scheduling problem. A mixed integer programming model is proposed, in order to obtaiUrlings ., T. (2010). Heuristics and metaheuristics for heavily constrained hybrid flowshop problems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8439Palanci

    From metaheuristics to learnheuristics: Applications to logistics, finance, and computing

    Get PDF
    Un gran nombre de processos de presa de decisions en sectors estratègics com el transport i la producció representen problemes NP-difícils. Sovint, aquests processos es caracteritzen per alts nivells d'incertesa i dinamisme. Les metaheurístiques són mètodes populars per a resoldre problemes d'optimització difícils en temps de càlcul raonables. No obstant això, sovint assumeixen que els inputs, les funcions objectiu, i les restriccions són deterministes i conegudes. Aquests constitueixen supòsits forts que obliguen a treballar amb problemes simplificats. Com a conseqüència, les solucions poden conduir a resultats pobres. Les simheurístiques integren la simulació a les metaheurístiques per resoldre problemes estocàstics d'una manera natural. Anàlogament, les learnheurístiques combinen l'estadística amb les metaheurístiques per fer front a problemes en entorns dinàmics, en què els inputs poden dependre de l'estructura de la solució. En aquest context, les principals contribucions d'aquesta tesi són: el disseny de les learnheurístiques, una classificació dels treballs que combinen l'estadística / l'aprenentatge automàtic i les metaheurístiques, i diverses aplicacions en transport, producció, finances i computació.Un gran número de procesos de toma de decisiones en sectores estratégicos como el transporte y la producción representan problemas NP-difíciles. Frecuentemente, estos problemas se caracterizan por altos niveles de incertidumbre y dinamismo. Las metaheurísticas son métodos populares para resolver problemas difíciles de optimización de manera rápida. Sin embargo, suelen asumir que los inputs, las funciones objetivo y las restricciones son deterministas y se conocen de antemano. Estas fuertes suposiciones conducen a trabajar con problemas simplificados. Como consecuencia, las soluciones obtenidas pueden tener un pobre rendimiento. Las simheurísticas integran simulación en metaheurísticas para resolver problemas estocásticos de una manera natural. De manera similar, las learnheurísticas combinan aprendizaje estadístico y metaheurísticas para abordar problemas en entornos dinámicos, donde los inputs pueden depender de la estructura de la solución. En este contexto, las principales aportaciones de esta tesis son: el diseño de las learnheurísticas, una clasificación de trabajos que combinan estadística / aprendizaje automático y metaheurísticas, y varias aplicaciones en transporte, producción, finanzas y computación.A large number of decision-making processes in strategic sectors such as transport and production involve NP-hard problems, which are frequently characterized by high levels of uncertainty and dynamism. Metaheuristics have become the predominant method for solving challenging optimization problems in reasonable computing times. However, they frequently assume that inputs, objective functions and constraints are deterministic and known in advance. These strong assumptions lead to work on oversimplified problems, and the solutions may demonstrate poor performance when implemented. Simheuristics, in turn, integrate simulation into metaheuristics as a way to naturally solve stochastic problems, and, in a similar fashion, learnheuristics combine statistical learning and metaheuristics to tackle problems in dynamic environments, where inputs may depend on the structure of the solution. The main contributions of this thesis include (i) a design for learnheuristics; (ii) a classification of works that hybridize statistical and machine learning and metaheuristics; and (iii) several applications for the fields of transport, production, finance and computing

    The dynamic, resource-constrained shortest path problem on an acyclic graph with application in column generation and literature review on sequence-dependent scheduling

    Get PDF
    This dissertation discusses two independent topics: a resource-constrained shortest-path problem (RCSP) and a literature review on scheduling problems involving sequence-dependent setup (SDS) times (costs). RCSP is often used as a subproblem in column generation because it can be used to solve many practical problems. This dissertation studies RCSP with multiple resource constraints on an acyclic graph, because many applications involve this configuration, especially in column genetation formulations. In particular, this research focuses on a dynamic RCSP since, as a subproblem in column generation, objective function coefficients are updated using new values of dual variables at each iteration. This dissertation proposes a pseudo-polynomial solution method for solving the dynamic RCSP by exploiting the special structure of an acyclic graph with the goal of effectively reoptimizing RCSP in the context of column generation. This method uses a one-time âÂÂpreliminaryâ phase to transform RCSP into an unconstrained shortest path problem (SPP) and then solves the resulting SPP after new values of dual variables are used to update objective function coefficients (i.e., reduced costs) at each iteration. Network reduction techniques are considered to remove some nodes and/or arcs permanently in the preliminary phase. Specified techniques are explored to reoptimize when only several coefficients change and for dealing with forbidden and prescribed arcs in the context of a column generation/branch-and-bound approach. As a benchmark method, a label-setting algorithm is also proposed. Computational tests are designed to show the effectiveness of the proposed algorithms and procedures. This dissertation also gives a literature review related to the class of scheduling problems that involve SDS times (costs), an important consideration in many practical applications. It focuses on papers published within the last decade, addressing a variety of machine configurations - single machine, parallel machine, flow shop, and job shop - reviewing both optimizing and heuristic solution methods in each category. Since lot-sizing is so intimately related to scheduling, this dissertation reviews work that integrates these issues in relationship to each configuration. This dissertation provides a perspective of this line of research, gives conclusions, and discusses fertile research opportunities posed by this class of scheduling problems. since, as a subproblem in column generation, objective function coefficients are updated using new values of dual variables at each iteration. This dissertation proposes a pseudo-polynomial solution method for solving the dynamic RCSP by exploiting the special structure of an acyclic graph with the goal of effectively reoptimizing RCSP in the context of column generation. This method uses a one-tim

    Algorithms and Methods for Designing and Scheduling Smart Manufacturing Systems

    Get PDF
    This book, as a Special Issue, is a collection of some of the latest advancements in designing and scheduling smart manufacturing systems. The smart manufacturing concept is undoubtedly considered a paradigm shift in manufacturing technology. This conception is part of the Industry 4.0 strategy, or equivalent national policies, and brings new challenges and opportunities for the companies that are facing tough global competition. Industry 4.0 should not only be perceived as one of many possible strategies for manufacturing companies, but also as an important practice within organizations. The main focus of Industry 4.0 implementation is to combine production, information technology, and the internet. The presented Special Issue consists of ten research papers presenting the latest works in the field. The papers include various topics, which can be divided into three categories—(i) designing and scheduling manufacturing systems (seven articles), (ii) machining process optimization (two articles), (iii) digital insurance platforms (one article). Most of the mentioned research problems are solved in these articles by using genetic algorithms, the harmony search algorithm, the hybrid bat algorithm, the combined whale optimization algorithm, and other optimization and decision-making methods. The above-mentioned groups of articles are briefly described in this order in this book

    A Polyhedral Study of Mixed 0-1 Set

    Get PDF
    We consider a variant of the well-known single node fixed charge network flow set with constant capacities. This set arises from the relaxation of more general mixed integer sets such as lot-sizing problems with multiple suppliers. We provide a complete polyhedral characterization of the convex hull of the given set

    Holistic, data-driven, service and supply chain optimisation: linked optimisation.

    Get PDF
    The intensity of competition and technological advancements in the business environment has made companies collaborate and cooperate together as a means of survival. This creates a chain of companies and business components with unified business objectives. However, managing the decision-making process (like scheduling, ordering, delivering and allocating) at the various business components and maintaining a holistic objective is a huge business challenge, as these operations are complex and dynamic. This is because the overall chain of business processes is widely distributed across all the supply chain participants; therefore, no individual collaborator has a complete overview of the processes. Increasingly, such decisions are automated and are strongly supported by optimisation algorithms - manufacturing optimisation, B2B ordering, financial trading, transportation scheduling and allocation. However, most of these algorithms do not incorporate the complexity associated with interacting decision-making systems like supply chains. It is well-known that decisions made at one point in supply chains can have significant consequences that ripple through linked production and transportation systems. Recently, global shocks to supply chains (COVID-19, climate change, blockage of the Suez Canal) have demonstrated the importance of these interdependencies, and the need to create supply chains that are more resilient and have significantly reduced impact on the environment. Such interacting decision-making systems need to be considered through an optimisation process. However, the interactions between such decision-making systems are not modelled. We therefore believe that modelling such interactions is an opportunity to provide computational extensions to current optimisation paradigms. This research study aims to develop a general framework for formulating and solving holistic, data-driven optimisation problems in service and supply chains. This research achieved this aim and contributes to scholarship by firstly considering the complexities of supply chain problems from a linked problem perspective. This leads to developing a formalism for characterising linked optimisation problems as a model for supply chains. Secondly, the research adopts a method for creating a linked optimisation problem benchmark by linking existing classical benchmark sets. This involves using a mix of classical optimisation problems, typically relating to supply chain decision problems, to describe different modes of linkages in linked optimisation problems. Thirdly, several techniques for linking supply chain fragmented data have been proposed in the literature to identify data relationships. Therefore, this thesis explores some of these techniques and combines them in specific ways to improve the data discovery process. Lastly, many state-of-the-art algorithms have been explored in the literature and these algorithms have been used to tackle problems relating to supply chain problems. This research therefore investigates the resilient state-of-the-art optimisation algorithms presented in the literature, and then designs suitable algorithmic approaches inspired by the existing algorithms and the nature of problem linkages to address different problem linkages in supply chains. Considering research findings and future perspectives, the study demonstrates the suitability of algorithms to different linked structures involving two sub-problems, which suggests further investigations on issues like the suitability of algorithms on more complex structures, benchmark methodologies, holistic goals and evaluation, processmining, game theory and dependency analysis

    Optimisation des plans de charge pour un flow-shop dans le cadre d'une production en juste temps : 1 - Convergence entre besoins et capacités.

    Get PDF
    Les politiques de production en « Juste A Temps », contrairement aux fabrications à « débit constant », satisfont aux impératifs de réactivité et de réduction des en-cours, mais engendrent d’importantes perturbations au niveau de l’affectation des ressources lorsque la demande est variable. La caractérisation et l’utilisation de méthodes d’organisation du travail permettent d’assurer la convergence entre besoins et capacités de productio
    corecore