2,257 research outputs found

    Spatial development of transport structures in apple (Malus x domestica Borkh.) fruit

    Get PDF
    The void network and vascular system are important pathways for the transport of gases, water and solutes in apple fruit (Malus x domestica Borkh). Here we used X-ray micro-tomography at various spatial resolutions to investigate the growth of these transport structures in 3D during fruit development of ‘Jonagold’ apple. The size of the void space and porosity in the cortex tissue increased considerably. In the core tissue, the porosity was consistently lower, and seemed to decrease towards the end of the maturation period. The voids in the core were more narrow and fragmented than the voids in the cortex. Both the void network in the core and in the cortex changed significantly in terms of void morphology. An automated segmentation protocol underestimated the total vasculature length by 9 to 12% in comparison to manually processed images. Vascular networks increased in length from a total of 5 meter at 9 weeks after full bloom, to more than 20 meter corresponding to 5 cm of vascular tissue per cubic centimeter of apple tissue. A high degree of branching in both the void network and vascular system and a complex three-dimensional pattern was observed across the whole fruit. The 3D visualisations of the transport structures may be useful for numerical modeling of organ growth and transport processes in fruit

    Ptychographic X-ray computed tomography of extended colloidal networks in food emulsions

    Get PDF
    As a main structural level in colloidal food materials, extended colloidal networks are important for texture and rheology. By obtaining the 3D microstructure of the network, macroscopic mechanical properties of the material can be inferred. However, this approach is hampered by the lack of suitable non-destructive 3D imaging techniques with submicron resolution. We present results of quantitative ptychographic X-ray computed tomography applied to a palm kernel oil based oil-in-water emulsion. The measurements were carried out at ambient pressure and temperature. The 3D structure of the extended colloidal network of fat globules was obtained with a resolution of around 300 nm. Through image analysis of the network structure, the fat globule size distribution was computed and compared to previous findings. In further support, the reconstructed electron density values were within 4% of reference values.Comment: 19 pages, 4 figures, to be published in Food Structur

    Uplift of Central Mongolia Recorded in Vesicular Basalts

    Get PDF
    Epeirogenic histories of highland areas have confounded earth scientists for decades, as there are few sedimentary records of paleoelevation in eroding highlands. For example, mechanisms that have led to the high elevations of the Hangay Mountains in central Mongolia are not clear, nor is it well understood how the epeirogenic history of central Mongolia is connected to that of a broader region of high elevation that extends hundreds of kilometers to the north, east, and west. However, preserved basaltic lava flows record paleoelevation in the size distributions of vesicles at the tops and bottoms of flow units. As an initial step toward better understanding the tectonics of this part of Asia, we collected and analyzed samples from several basaltic lava flows from throughout the Hangay Mountains to use as a paleoaltimeter on the basis of lava flow vesicularity. Samples were dated and scanned with x-ray tomography to provide quantitative information regarding their internal vesicle size distributions. This yielded the pressure difference between the top and bottom of each flow for paleoelevation calculation. Results suggest that the Hangay Mountains experienced uplift of more than 1 km sometime during the past 9 m.yr. The magnitude of uplift of the Hangay, in addition to the composition of its lavas, the geomorphology of the region, its drainage pattern history, and other proxies, bears on possible mechanisms for uplift of this part of central Asia

    Root Canal Obturation by Electrochemical Precipitation of Calcium Phosphates

    Get PDF
    Achieving adequate disinfection and preventing reinfection is the major goal in endodontic treatment. Variation in canal morphology and open porosity of dentine prevents achieving complete disinfection. Questionable biocompatibility of materials as well as a lack of sealing ability questions the usefulness of current obturation methods. With a novel disinfection approach based on the use of boron-doped diamond (BDD) electrodes having shown promising results it was the goal of this series of experiments to investigate the possibility of BDD-mediated in situ forming of a biocompatible obturation material. A combination of calcium phosphate and maleic acid was used as precursor solution while Ion Chromatography Mass Spectrometry (IC-MS), Raman spectroscopy (RAMAN), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), dye penetration and micro-computed tomography (µCT) were applied for characterizing the precipitate. It was possible to achieve a BDD-mediated precipitation of brushite in a clinically applicable timeframe. However, tight sealing of the canal system based on brushite could not be achieved

    Methods to analyse and interpret shallow seismic data: onshore central Perth basin, Western Australia

    Get PDF
    The main aim of the research was to develop a methodology for inferring complex sub-surface shallow structures from seismic data that are of a high relevance to hydrological studies in Perth Basin. A set of realistic 2D and 3D numerical modelling experiments were conducted that show that in the best case it is possible to interpret complex geological structure from 3D seismic data

    Examining the role of sea ice and meteorology in Arctic boundary layer halogen chemistry

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2015Given the ubiquitous nature of ice, chemistry taking place on ice surfaces has a substantial effect on the environment, particularly in the polar regions. The return of sunlight to the polar regions releases halogen radicals (e.g. Br, Cl and their oxides, e.g. BrO) generated from salts on ice surfaces. These radicals fundamentally alter the chemistry of the Arctic boundary layer through processes such as boundary-layer ozone depletion events and mercury deposition events. Current understanding of the chemical processes involved in Arctic halogen chemistry is inhibited by a lack of knowledge about the ice surfaces on which this chemistry is thought to take place, as well as the sparsity of long-term field observations of this chemistry and its effects. This dissertation addresses both needs through a combination of laboratory experiments and long-term field studies. First, we use X-ray absorption computed micro-tomography at the Advanced Photon Source to image brine distributions within laboratory grown mimics of sea-ice features. These experiments showed that when brine is introduced to ice via wicking of brine from a saline surface, the resulting brine distribution is heterogeneous, with brine existing in distinct regions within the sample, rather than evenly spreading over the sample surface. To examine the horizontal and vertical extent of halogen chemistry in the Arctic boundary layer, we conducted long-term measurements of BrO at Barrow, Alaska using Multiple-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS). We developed a method to reduce these measurements to timeseries of near-surface and total column amounts of BrO. These measurements showed that the vertical distribution is highly variable, ranging from shallow layer events confined to the lowest 200 m, to distributed column events, which have lower mixing ratios of BrO, but are more distributed throughout approximately the lowest kilometer of the atmosphere. We find that the observed vertical distributions of BrO are influenced by atmospheric stability. We found minimal influence of wind speed on either lower-tropospheric bromine activation (LT-VCD) or the vertical distribution of BrO, while examination of seasonal trends and the temperature dependence of the vertical distribution support the finding that atmospheric stability affects the distribution of BrO. While shallow layer events have higher concentrations of halogens, distributed column events tend to have higher overall amounts of activation, implying that in situ near surface measurements may be insufficient to constrain the role of environmental parameters in the activation of halogens. Examination of multiple years of data at Barrow, Alaska shows that time spent in first year ice (FYI) areas is weakly linearly correlated (R=0.38) with the activation of BrO. However, examining annual averages of BrO shows that despite the non-linear relationship between time in FYI areas and BrO, time spent in FYI areas still influences the interannual variability of BrO

    Combining high-throughput micro-CT-RGB phenotyping and genome-wide association study to dissect the genetic architecture of tiller growth in rice

    Get PDF
    Manual phenotyping of rice tillers is time consuming and labor intensive and lags behind the rapid development of rice functional genomics. Thus, automated, non-destructive phenotyping of rice tiller traits at a high spatial resolution and high-throughput for large-scale assessment of rice accessions is urgently needed. In this study, we developed a high-throughput micro-CT-RGB (HCR) imaging system to non-destructively extract 730 traits from 234 rice accessions at 9 time points. We could explain 30% of the grain yield variance from 2 tiller traits assessed in the early growth stages. A total of 402 significantly associated loci were identified by GWAS, and dynamic and static genetic components were found across the nine time points. A major locus associated with tiller angle was detected at nine time points, which contained a major gene TAC1. Significant variants associated with tiller angle were enriched in the 3'-UTR of TAC1. Three haplotypes for the gene were found and rice accessions containing haplotype H3 displayed much smaller tiller angles. Further, we found two loci contained associations with both vigor-related HCR traits and yield. The superior alleles would be beneficial for breeding of high yield and dense planting

    Integrated interpretation of seismic and resistivity images across the «Val d'Agri» graben (Italy)

    Get PDF
    Val d'Agri is a «recent SSW - NNE graben» located in the middle of the Southern Apennines thrust belt «chain» and emplaced in Plio-Pleistocene.The recent sedimentation of the valley represents a local critical geophysical problem. Several strong near surface velocity anomalies and scattering degrades seismic data in different ways and compromises the seismic visibility. In 1998, ENI and Enterprise, with the contribution of the European Community (ESIT R & D project - Enhance Seismic In Thrust Belt; EU Thermie fund) acquired two «experimental seismic and Resistivity lines» across the valley. The purpose of the project was to look for methods able to enhance seismic data quality and optimize the data processing flow for «thrust belt» areas. During the work, it was clear that some part of the seismic data processing flow could be used for the detailed geological interpretation of the near subsurface too. In fact, the integrated interpretation of the near surface tomography velocity/depth seismic section, built for enhancing the resolution of static corrections, with the HR resistivity profile, acquired for enhancing the seismic source coupling, allowed a quite detailed lithological interpretation of the main shallow velocity changes and the 2D reconstruction of the structural setting of the valley
    corecore