67 research outputs found

    Subdivisional spaces and graph braid groups

    Get PDF
    We study the problem of computing the homology of the configuration spaces of a finite cell complex XX. We proceed by viewing XX, together with its subdivisions, as a subdivisional space--a kind of diagram object in a category of cell complexes. After developing a version of Morse theory for subdivisional spaces, we decompose XX and show that the homology of the configuration spaces of XX is computed by the derived tensor product of the Morse complexes of the pieces of the decomposition, an analogue of the monoidal excision property of factorization homology. Applying this theory to the configuration spaces of a graph, we recover a cellular chain model due to \'{S}wi\k{a}tkowski. Our method of deriving this model enhances it with various convenient functorialities, exact sequences, and module structures, which we exploit in numerous computations, old and new.Comment: 71 pages, 15 figures. Typo fixed. May differ slightly from version published in Documenta Mathematic

    Weighted Modulo Orientations of Graphs

    Get PDF
    This dissertation focuses on the subject of nowhere-zero flow problems on graphs. Tutte\u27s 5-Flow Conjecture (1954) states that every bridgeless graph admits a nowhere-zero 5-flow, and Tutte\u27s 3-Flow Conjecture (1972) states that every 4-edge-connected graph admits a nowhere-zero 3-flow. Extending Tutte\u27s flows conjectures, Jaeger\u27s Circular Flow Conjecture (1981) says every 4k-edge-connected graph admits a modulo (2k+1)-orientation, that is, an orientation such that the indegree is congruent to outdegree modulo (2k+1) at every vertex. Note that the k=1 case of Circular Flow Conjecture coincides with the 3-Flow Conjecture, and the case of k=2 implies the 5-Flow Conjecture. This work is devoted to providing some partial results on these problems. In Chapter 2, we study the problem of modulo 5-orientation for given multigraphic degree sequences. We prove that a multigraphic degree sequence d=(d1,..., dn) has a realization G with a modulo 5-orientation if and only if di≤1,3 for each i. In addition, we show that every multigraphic sequence d=(d1,..., dn) with min{1≤i≤n}di≥9 has a 9-edge-connected realization that admits a modulo 5-orientation for every possible boundary function. Jaeger conjectured that every 9-edge-connected multigraph admits a modulo 5-orientation, whose truth would imply Tutte\u27s 5-Flow Conjecture. Consequently, this supports the conjecture of Jaeger. In Chapter 3, we show that there are essentially finite many exceptions for graphs with bounded matching numbers not admitting any modulo (2k+1)-orientations for any positive integers t. We additionally characterize all infinite many graphs with bounded matching numbers but without a nowhere-zero 3-flow. This partially supports Jaeger\u27s Circular Flow Conjecture and Tutte\u27s 3-Flow Conjecture. In 2018, Esperet, De Verclos, Le and Thomass introduced the problem of weighted modulo orientations of graphs and indicated that this problem is closely related to modulo orientations of graphs, including Tutte\u27s 3-Flow Conjecture. In Chapter 4 and Chapter 5, utilizing properties of additive bases and contractible configurations, we reduced the Esperet et al\u27s edge-connectivity lower bound for some (signed) graphs families including planar graphs, complete graphs, chordal graphs, series-parallel graphs and bipartite graphs, indicating that much lower edge-connectivity bound still guarantees the existence of such orientations for those graph families. In Chapter 6, we show that the assertion of Jaeger\u27s Circular Flow Conjecture with k=2 holds asymptotically almost surely for random 9-regular graphs

    (3+1)-dimensional topological phases and self-dual quantum geometries encoded on Heegard surfaces

    Full text link
    We apply the recently suggested strategy to lift state spaces and operators for (2+1)-dimensional topological quantum field theories to state spaces and operators for a (3+1)-dimensional TQFT with defects. We start from the (2+1)-dimensional Turaev-Viro theory and obtain a state space, consistent with the state space expected from the Crane-Yetter model with line defects. This work has important applications for quantum gravity as well as the theory of topological phases in (3+1) dimensions. It provides a self-dual quantum geometry realization based on a vacuum state peaked on a homogeneously curved geometry. The state spaces and operators we construct here provide also an improved version of the Walker-Wang model, and simplify its analysis considerably. We in particular show that the fusion bases of the (2+1)-dimensional theory lead to a rich set of bases for the (3+1)-dimensional theory. This includes a quantum deformed spin network basis, which in a loop quantum gravity context diagonalizes spatial geometry operators. We also obtain a dual curvature basis, that diagonalizes the Walker-Wang Hamiltonian. Furthermore, the construction presented here can be generalized to provide state spaces for the recently introduced dichromatic four-dimensional manifold invariants.Comment: 27 pages, many figures, v2: minor correction

    Cluster varieties from Legendrian knots

    Full text link
    Many interesting spaces --- including all positroid strata and wild character varieties --- are moduli of constructible sheaves on a surface with microsupport in a Legendrian link. We show that the existence of cluster structures on these spaces may be deduced in a uniform, systematic fashion by constructing and taking the sheaf quantizations of a set of exact Lagrangian fillings in correspondence with isotopy representatives whose front projections have crossings with alternating orientations. It follows in turn that results in cluster algebra may be used to construct and distinguish exact Lagrangian fillings of Legendrian links in the standard contact three space.Comment: 47 page

    Computational Geometric and Algebraic Topology

    Get PDF
    Computational topology is a young, emerging field of mathematics that seeks out practical algorithmic methods for solving complex and fundamental problems in geometry and topology. It draws on a wide variety of techniques from across pure mathematics (including topology, differential geometry, combinatorics, algebra, and discrete geometry), as well as applied mathematics and theoretical computer science. In turn, solutions to these problems have a wide-ranging impact: already they have enabled significant progress in the core area of geometric topology, introduced new methods in applied mathematics, and yielded new insights into the role that topology has to play in fundamental problems surrounding computational complexity. At least three significant branches have emerged in computational topology: algorithmic 3-manifold and knot theory, persistent homology and surfaces and graph embeddings. These branches have emerged largely independently. However, it is clear that they have much to offer each other. The goal of this workshop was to be the first significant step to bring these three areas together, to share ideas in depth, and to pool our expertise in approaching some of the major open problems in the field

    Modeling and Tuning of Energy Harvesting Device Using Piezoelectric Cantilever Array

    Get PDF
    Piezoelectric devices have been increasingly investigated as a means of converting ambient vibrations into electrical energy that can be stored and used to power other devices, such as the sensors/actuators, micro-electro-mechanical systems (MEMS) devices, and microprocessor units etc. The objective of this work was to design, fabricate, and test a piezoelectric device to harvest as much power as possible from vibration sources and effectively store the power in a battery.;The main factors determining the amount of collectable power of a single piezoelectric cantilever are its resonant frequency, operation mode and resistive load in the charging circuit. A proof mass was used to adjust the resonant frequency and operation mode of a piezoelectric cantilever by moving the mass along the cantilever. Due to the tiny amount of collected power, a capacitor was suggested in the charging circuit as an intermediate station. To harvest sufficient energy, a piezoelectric cantilever array, which integrates multiple cantilevers in parallel connection, was investigated.;In the past, most prior research has focused on the theoretical analysis of power generation instead of storing generated power in a physical device. In this research, a commercial solid-state battery was used to store the power collected by the proposed piezoelectric cantilever array. The time required to charge the battery up to 80% capacity using a constant power supply was 970 s. It took about 2400 s for the piezoelectric array to complete the same task. Other than harvesting energy from sinusoidal waveforms, a vibration source that emulates a real environment was also studied. In this research the response of a bridge-vehicle system was used as the vibration sources such a scenario is much closer to a real environment compared with typical lab setups

    Heegaard-Floer homology and string links

    Full text link
    We extend knot Floer homology to string links in D^{2} \times I and to d-based links in arbitrary three manifolds, without any hypothesis on the null-homology of the components. As for knot Floer homology we obtain a description of the Euler characteristic of the resulting homology groups (in D^{2} \times I) in terms of the torsion of the string link. Additionally, a state summation approach is described using the equivalent of Kauffman states. Furthermore, we examine the situtation for braids, prove that for alternating string links the Euler characteristic determines the homology, and develop similar composition formulas and long exact sequences as in knot Floer homology.Comment: 57 page

    Sturm 3-ball global attractors 3: Examples of Thom-Smale complexes

    Full text link
    Examples complete our trilogy on the geometric and combinatorial characterization of global Sturm attractors A\mathcal{A} which consist of a single closed 3-ball. The underlying scalar PDE is parabolic, ut=uxx+f(x,u,ux), u_t = u_{xx} + f(x,u,u_x)\,, on the unit interval 0<x<10 < x<1 with Neumann boundary conditions. Equilibria vt=0v_t=0 are assumed to be hyperbolic. Geometrically, we study the resulting Thom-Smale dynamic complex with cells defined by the fast unstable manifolds of the equilibria. The Thom-Smale complex turns out to be a regular cell complex. In the first two papers we characterized 3-ball Sturm attractors A\mathcal{A} as 3-cell templates C\mathcal{C}. The characterization involves bipolar orientations and hemisphere decompositions which are closely related to the geometry of the fast unstable manifolds. An equivalent combinatorial description was given in terms of the Sturm permutation, alias the meander properties of the shooting curve for the equilibrium ODE boundary value problem. It involves the relative positioning of extreme 2-dimensionally unstable equilibria at the Neumann boundaries x=0x=0 and x=1x=1, respectively, and the overlapping reach of polar serpents in the shooting meander. In the present paper we apply these descriptions to explicitly enumerate all 3-ball Sturm attractors A\mathcal{A} with at most 13 equilibria. We also give complete lists of all possibilities to obtain solid tetrahedra, cubes, and octahedra as 3-ball Sturm attractors with 15 and 27 equilibria, respectively. For the remaining Platonic 3-balls, icosahedra and dodecahedra, we indicate a reduction to mere planar considerations as discussed in our previous trilogy on planar Sturm attractors.Comment: 73+(ii) pages, 40 figures, 14 table; see also parts 1 and 2 under arxiv:1611.02003 and arxiv:1704.0034
    corecore