4,525 research outputs found

    Rotor-vortex interaction noise

    Get PDF
    A theoretical and experimental study was conducted to develop a validated first principles analysis for predicting noise generated by helicopter main-rotor shed vortices interacting with the tail rotor. The generalized prediction procedure requires a knowledge of the incident vortex velocity field, rotor geometry, and rotor operating conditions. The analysis includes compressibility effects, chordwise and spanwise noncompactness, and treats oblique intersections with the blade planform. Assessment of the theory involved conducting a model rotor experiment which isolated the blade-vortex interaction noise from other rotor noise mechanisms. An isolated tip vortex, generated by an upstream semispan airfoil, was convected into the model tail rotor. Acoustic spectra, pressure signatures, and directivity were measured. Since assessment of the acoustic prediction required a knowledge of the vortex properties, blade-vortes intersection angle, intersection station, vortex stength, and vortex core radius were documented. Ingestion of the vortex by the rotor was experimentally observed to generate harmonic noise and impulsive waveforms

    Global visualization and quantification of compressible vortex loops

    Get PDF
    The physics of compressible vortex loops generated due to the rolling up of the shear layer upon the diffraction of a shock wave from a shock tube is far from being understood, especially when shock-vortex interactions are involved. This is mainly due to the lack of global quantitative data available which characterizes the flow. The present study involves the usage of the PIV technique to characterize the velocity and vorticity of compressible vortex loops formed at incident shock Mach numbers ofM=1.54 and1.66. Another perk of the PIV technique over purely qualitative methods, which has been demonstrated in the current study, is that at the same time the results also provide a clear image of the various flow features. Techniques such as schlieren and shadowgraph rely on density gradients present in the flow and fail to capture regions of the flow influenced by the primary flow structure which would have relatively lower pressure and density. Various vortex loops, namely, square, elliptic and circular, were generated using different shape adaptors fitted to the end of the shock tube. The formation of a coaxial vortex loop with opposite circulation along with the generation of a third stronger vortex loop ahead of the primary with same circulation direction are of the interesting findings of the current study

    Supersonic shock wave/vortex interaction

    Get PDF
    Although shock wave/vortex interaction is a basic and important fluid dynamics problem, very little research has been conducted on this topic. Therefore, a detailed experimental study of the interaction between a supersonic streamwise turbulent vortex and a shock wave was carried out at the Penn State Gas Dynamics Laboratory. A vortex is produced by replaceable swirl vanes located upstream of the throat of various converging-diverging nozzles. The supersonic vortex is then injected into either a coflowing supersonic stream or ambient air. The structure of the isolated vortex is investigated in a supersonic wind tunnel using miniature, fast-response, five-hole and total temperature probes and in a free jet using laser Doppler velocimetry. The cases tested have unit Reynolds numbers in excess of 25 million per meter, axial Mach numbers ranging from 2.5 to 4.0, and peak tangential Mach numbers from 0 (i.e., a pure jet) to about 0.7. The results show that the typical supersonic wake-like vortex consists of a non-isentropic, rotational core, where the reduced circulation distribution is self similar, and an outer isentropic, irrotational region. The vortex core is also a region of significant turbulent fluctuations. Radial profiles of turbulent kinetic energy and axial-tangential Reynolds stress are presented. The interactions between the vortex and both oblique and normal shock waves are investigated using nonintrusive optical diagnostics (i.e. schlieren, planar laser scattering, and laser Doppler velocimetry). Of the various types, two Mach 2.5 overexpanded-nozzle Mach disc interactions are examined in detail. Below a certain vortex strength, a 'weak' interaction exists in which the normal shock is perturbed locally into an unsteady 'bubble' shock near the vortex axis, but vortex breakdown (i.e., a stagnation point) does not occur. For stronger vortices, a random unsteady 'strong' interaction results that causes vortex breakdown. The vortex core reforms downstream of the rear stagnation point, and the reduced circulation distribution once again becomes self-similar in this region. A-new model of this interaction is proposed. Finally, a curve defining the approximate limits of supersonic vortex breakdown is presented

    Ordered structures and jet noise

    Get PDF
    A series of measurements of near field pressures and turbulent velocity fluctuations were made in a jet having a Reynolds number of about 50,000 in order to investigate more quantitatively the character and behavior of the large scale structures, and to ascertain their importance to the jet noise problem. It was found that the process of interaction between vortices can be inhibited by artificially exciting the shear layers with periodic disturbances of certain frequency. The turbulent fluctuation amplitudes measured at four diameters downstream decreased considerably. Finally, it was observed that the passage frequency of the structures decreased with x in a similar manner as the frequency corresponding to the maximum intensity radiation emanating from the same value of x

    Development of a microfluidic unit for sequencing fluid samples for composition analysis

    Get PDF
    A microfluidic sample-sequencing unit was developed as a part of a high-throughput catalyst screening facility. It may find applications wherever a fluid is to be selected for analysis from any one of several sources, such as microreactors operating in parallel. The novel feature is that the key components are fluidic valves having no moving parts and operating at very low sample flow Reynolds numbers, typically below 100. The inertial effects utilized in conventional no-moving-part fluidics are nearly absent; instead, the flows are pressure-driven. Switching between input channels is by high-Reynolds-number control flows, the jet pumping effect of which simultaneously cleans the downstream cavities to prevent crosscontamination between the samples. In the configuration discussed here, the integrated circuit containing an array of 16 valves is etched into an 84mm diameter stainless steel foil. This is clamped into a massive assembly containing 16 mini-reactors operated at up to 400C and 4 MPa. This paper describes the design basis and experience with prototypes. Results of CFD analysis, with scrutiny of some discrepancies when compared with flow visualization, is included

    Unsteady Aerodynamic Interaction Between Rotor and Ground Obstacle

    Get PDF
    The mutual aerodynamic interaction between rotor wake and surrounding obstacles is complex, and generates high compensatory workload for pilots, degradation of the handling qualities and performance, and unsteady force on the structure of the obstacles. The interaction also affects the minimum distance between rotorcrafts and obstacles to operate safely. A vortex-based approach is then employed to investigate the complex aerodynamic interaction between rotors and ground obstacle, and identify the distance where the interaction ends, and this is also the objective of the GARTEUR AG22 working group activities. In this approach, the aerodynamic loads of the rotor blades are described through a panel method, and the unsteady behaviour of the rotor wake is modelled using a vortex particle method. The effects of the ground plane and obstacle are accounted for via a viscous boundary model. The method is then applied to a “Large” and a “Wee” rotor near the ground and obstacle, and compared with the earlier experiments carried out at the University of Glasgow. The results show that the predicted rotor induced inflow and flow field compare reasonably well with the experiments. Furthermore, at certain conditions the tip vortices are pushed up and re-injected into the rotor wake due to the effect of the obstacle resulting in a recirculation. Moreover, contrary to without the obstacle case, the peak and thickness of the radial outwash near the obstacle is smaller due to the barrier effect of the obstacle, and an up-wash is observed. Additionally, as the rotor closes to the obstacle, the rotor slipstreams impinge directly on the obstacle, and the up-wash near the obstacle is faster, indicating a stronger interaction between the rotor wake and the obstacle. Also, contrary to the case without the obstacle, the fluctuations of the rotor thrust, rolling and pitching moments are obviously strengthened. When the distance between the rotor and the obstacle is larger than 3R, the effect of the obstacle is small
    corecore