6,068 research outputs found

    New devices for flow measurements: Hot film and burial wire sensors, infrared imagery, liquid crystal, and piezo-electric model

    Get PDF
    An experimental program aimed at identifying areas in low speed aerodynamic research where infrared imaging systems can make significant contributions is discussed. Implementing a new technique, a long electrically heated wire was placed across a laminar flow. By measuring the temperature distribution along the wire with the IR imaging camera, the flow behavior was identified

    Investigation of Transitional Shock-Wave/Boundary Layer Interactions Using Direct Numerical Simulations

    Get PDF
    Interaction of a transitional boundary layer with a normal-shock is investigated using unstructured tetrahedral meshes under the numerical framework of the space-time conservation element, solution element (CESE) method. The computations mimic recent experimental efforts at the University of Tennessee Space Institute, where a Mach 2.0 flow interacts with a tall cylinder attached to a flat plate. The location of the cylinder with respect to the flat plate leading edge determines if the incoming boundary layer is laminar, transitional or fully turbulent. Four representative flow conditions exemplifying laminar and transitional boundary layers are analyzed by direct numerical simulations. Similar to what was observed in the experiments for the case of transitional interaction, the computations reveal an intermittent upstream influence (UI) shock that repeatedly travels upstream from the lambda-foot toward the leading edge before vanishing. Through detailed unsteady flow analysis obtained using Fourier analysis and dynamic mode decomposition techniques, the presence of disturbances with similar frequencies as those measured in experiments were identified in the flow along with locations that appear to influence the dynamics of the flow

    Research in Natural Laminar Flow and Laminar-Flow Control, part 2

    Get PDF
    Part 2 of the Symposium proceedings includes papers addressing various topics in basic wind tunnel research/techniques and computational transitional research. Specific topics include: advanced measurement techniques; laminar flow control; Tollmien-Schlichting wave characteristics; boundary layer transition; flow visualization; wind tunnel tests; flight tests; boundary layer equations; swept wings; and skin friction

    Strong interaction of a turbulent spot with a shock-induced separation bubble

    No full text
    Direct numerical simulations have been conducted to study the passage of a turbulent spot through a shock-induced separation bubble. Localized blowing is used to trip the boundary layer well upstream of the shock impingement, leading to mature turbulent spots at impingement, with a length comparable to the length of the separation zone. Interactions are simulated at free stream Mach numbers of two and four, for isothermal (hot) wall boundary conditions. The core of the spot is seen to tunnel through the separation bubble, leading to a transient reattachment of the flow. Recovery times are long due to the influence of the calmed region behind the spot. The propagation speed of the trailing interface of the spot decreases during the interaction and a substantial increase in the lateral spreading of the spot was observed. A conceptual model based on the growth of the lateral shear layer near the wingtips of the spot is used to explain the change in lateral growth rat

    Evaluation of a technique to generate artificially thickened boundary layers in supersonic and hypersonic flows

    Get PDF
    The feasibility of using a contoured honeycomb model to generate a thick boundary layer in high-speed, compressible flow was investigated. The contour of the honeycomb was tailored to selectively remove momentum in a minimum of streamwise distance to create an artificially thickened turbulent boundary layer. Three wind tunnel experiments were conducted to verify the concept. Results indicate that this technique is a viable concept, especially for high-speed inlet testing applications. In addition, the compactness of the honeycomb boundary layer simulator allows relatively easy integration into existing wind tunnel model hardware

    Introductory remarks

    Get PDF
    Suggested fluid mechanics research to be conducted in the National Transonic Facility include: wind tunnel calibration; flat plate skin friction, flow visualization and measurement techniques; leading edge separation; high angle of attack separation; shock-boundary layer interaction; submarine shapes; low speed studies of cylinder normal to flow; and wall interference effects. These theoretical aerodynamic investigations will provide empirical inputs or validation data for computational aerodynamics, and increase the usefulness of existing wind tunnels

    A Numerical Study of the Limiting Cases of Cylinder-Induced Shock Wave/Boundary Layer Interactions

    Get PDF
    One of the limiting factors in the design of supersonic and hypersonic vehicles remains the prediction and control of the high aerodynamic, thermodynamic, acoustic, and structural loads generated by a shock wave/boundary layer interaction (SWBLI or SBLI). In conjunction with an experimental campaign produced within the research group, a numerical study was performed using a semi-infinite cylinder to generate a SWBLI at Mach 1.88 with both laminar and turbulent boundary layers. The goals were not only to better understand the complex flow surrounding the cylinder-induced turbulent interaction, but also to establish the interaction bounds of the limiting cases of a transitional interaction. Steady-state Reynolds-averaged Navier-Stokes (RANS) simulations were performed to predict the shock structures, separation and attachment points, and pressure profiles in the upstream region and on the cylinder leading edge. A variety of turbulence models were tested, namely the cubic k-epsilon (CKE), Menter’s shear-stress transport (SST), and Spalart-Allmaras (SA) with quadratic constitutive relations (QCR). Both the CKE and SA-QCR turbulence models showed good agreement with in-house experimental data and literature, and are thus recommended for future use in these types of flow fields. Correlations between the vortex structures and peak and trough pressures were found, thus allowing for a steady-state flow characterization. The effect of varying the incoming boundary layer height was studied, when all other values were kept constant, and it was determined that an increased boundary layer height decreased both the interaction scale and the peak pressure

    Compendium of NASA Langley reports on hypersonic aerodynamics

    Get PDF
    Reference is made to papers published by the Langley Research Center in various areas of hypersonic aerodynamics for the period 1950 to 1986. The research work was performed either in-house by the Center staff or by other personnel supported entirely or in part by grants or contracts. Abstracts have been included with the references when available. The references are listed chronologically and are grouped under the following general headings: (1) Aerodynamic Measurements - Single Shapes; (2) Aerodynamic Measurements - Configurations; (3) Aero-Heating; (4) Configuration Studies; (5) Propulsion Integration Experiment; (6) Propulsion Integration - Study; (7) Analysis Methods; (8) Test Techniques; and (9) Airframe Active Cooling Systems

    Twenty-five years of aerodynamic research with IR imaging: A survey

    Get PDF
    Infrared imaging used in aerodynamic research evolved during the last 25 years into a rewarding experimental technique for investigation of body-flow viscous interactions, such as heat flux determination and boundary layer transition. The technique of infrared imaging matched well its capability to produce useful results, with the expansion of testing conditions in the entire spectrum of wind tunnels, from hypersonic high-enthalpy facilities to cryogenic transonic wind tunnels. With unique achievements credited to its past, the current trend suggests a change in attitude towards this technique: from the perception as an exotic, project-oriented tool, to the status of a routine experimental procedure
    • …
    corecore