661 research outputs found

    Scheduling problems with the effects of deterioration and learning

    Get PDF
    Author name used in this publication: T. C. E. Cheng2006-2007 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Advances and Novel Approaches in Discrete Optimization

    Get PDF
    Discrete optimization is an important area of Applied Mathematics with a broad spectrum of applications in many fields. This book results from a Special Issue in the journal Mathematics entitled ‘Advances and Novel Approaches in Discrete Optimization’. It contains 17 articles covering a broad spectrum of subjects which have been selected from 43 submitted papers after a thorough refereeing process. Among other topics, it includes seven articles dealing with scheduling problems, e.g., online scheduling, batching, dual and inverse scheduling problems, or uncertain scheduling problems. Other subjects are graphs and applications, evacuation planning, the max-cut problem, capacitated lot-sizing, and packing algorithms

    Developing an Agent Based Heuristic Optimisation System for Complex Flow Shops with Customer-Imposed Production Disruptions

    Get PDF
    The study of complex manufacturing flow-shops has seen a number of approaches and frameworks proposed to tackle various production-associated problems. However, unpredictable disruptions, such as change in sequence of order, order cancellation and change in production delivery due time, imposed by customers on flow-shops that impact production processes and inventory control call for a more adaptive approach capable of responding to these changes. In this research work, a new adaptive framework and agent-based heuristic optimization system was developed to investigate the disruption consequences and recovery strategy. A case study using an Original Equipment Manufacturer (OEM) production process of automotive parts and components was adopted to justify the proposed system. The results of the experiment revealed significant improvement in terms of total number of late orders, order delivery time, number of setups and resources utilization, which provide useful information for manufacturer’s decision-making policies.

    Energy and labor aware production scheduling for industrial demand response using adaptive multi-objective memetic algorithm

    Get PDF
    Price-based demand response stimulates factories to adapt their power consumption patterns to time-sensitive electricity prices to reduce cost. This paper introduces a multi-objective optimization model which schedules job processing, machine idle modes, and human workers under real-time electricity pricing. Beyond existing models, labor is considered due to the trade-off between energy and labor costs. An adaptive multi-objective memetic algorithm is proposed to leverage feedback of cross-dominance and stagnation in a search and a prioritized grouping strategy. Thus, adaptive balance remains between exploration of the NSGA-II and exploitation of two mutually complementary local search operators. A case study of an extrusion blow molding process in a plastic bottle manufacturer demonstrate the effectiveness and efficiency of the algorithm. The proposed scheduling method enables intelligent production systems, where production loads and human workers are mutually matched and jointly adapted to real-time electricity pricing for cost-efficient production

    Four decades of research on the open-shop scheduling problem to minimize the makespan

    Full text link
    One of the basic scheduling problems, the open-shop scheduling problem has a broad range of applications across different sectors. The problem concerns scheduling a set of jobs, each of which has a set of operations, on a set of different machines. Each machine can process at most one operation at a time and the job processing order on the machines is immaterial, i.e., it has no implication for the scheduling outcome. The aim is to determine a schedule, i.e., the completion times of the operations processed on the machines, such that a performance criterion is optimized. While research on the problem dates back to the 1970s, there have been reviving interests in the computational complexity of variants of the problem and solution methodologies in the past few years. Aiming to provide a complete road map for future research on the open-shop scheduling problem, we present an up-to-date and comprehensive review of studies on the problem that focuses on minimizing the makespan, and discuss potential research opportunities

    Flowshop with additional resources during setups: Mathematical models and a GRASP algorithm

    Full text link
    [EN] Machine scheduling problems arise in many production processes, and are something that needs to be consider when optimizing the supply chain. Among them, flowshop scheduling problems happen when a number of jobs have to be sequentially processed by a number of machines. This paper addressees, for the first time, the Permutation Flowshop Scheduling problem with additional Resources during Setups (PFSR-S). In this problem, in addition to the standard permutation flowshop constraints, each machine requires a setup between the processing of two consecutive jobs. A number of additional and scarce resources, e.g. operators, are needed to carry out each setup. Two Mixed Integer Linear Programming formulations and an exact algorithm are proposed to solve the PFSR-S. Due to its complexity, these approaches can only solve instances of small size to optimality. Therefore, a GRASP metaheuristic is also proposed which provides solutions for much larger instances. All the methods designed for the PFSR-S in this paper are computationally tested over a benchmark of instances adapted from the literature. The results obtained show that the GRASP metaheuristic finds good quality solutions in short computational times.Juan C. Yepes-Borrero acknowledges financial support by Colfuturo under program Credito-Beca grant number 201503877 and from ElInstituto Colombiano de Credito Educativo y Estudios Tecnicos en el Exterior - ICETEX under program Pasaporte a la ciencia - Doctor-ado, Foco-reto pais 4.2.3, grant number 3568118. This research hasbeen partially supported by the Agencia Estatal de Investigacion (AEI)and the European Regional Development's fund (ERDF): PID2020-114594GB-C21; Regional Government of Andalusia: projects FEDER-US-1256951, AT 21_00032, and P18-FR-1422; Fundacion BBVA: project Netmeet Data (Ayudas Fundacion BBVA a equipos de investigacioncientifica 2019). The authors are partially supported by Agencia Valenciana de la Innovacion (AVI) under the project ireves (innovacionen vehiculos de emergencia sanitaria): una herramienta inteligente dedecision'' (No. INNACC/2021/26) partially financed with FEDER funds(interested readers can visit http://ireves.upv.es), and by the Spanish Ministry of Science and Innovation under the project OPRES-RealisticOptimization in Problems in Public Health'' (No. PID2021-124975OB-I00), partially financed with FEDER funds. Part of the authors aresupported by the Faculty of Business Administration and Managementat Universitat Politecnica de ValenciaYepes-Borrero, JC.; Perea, F.; Villa Juliá, MF.; Vallada Regalado, E. (2023). Flowshop with additional resources during setups: Mathematical models and a GRASP algorithm. Computers & Operations Research. 154. https://doi.org/10.1016/j.cor.2023.10619215

    Job-shop scheduling with approximate methods

    Get PDF
    Imperial Users onl

    Variable Neighborhood Search for Parallel Machines Scheduling Problem with Step Deteriorating Jobs

    Get PDF
    In many real scheduling environments, a job processed later needs longer time than the same job when it starts earlier. This phenomenon is known as scheduling with deteriorating jobs to many industrial applications. In this paper, we study a scheduling problem of minimizing the total completion time on identical parallel machines where the processing time of a job is a step function of its starting time and a deteriorating date that is individual to all jobs. Firstly, a mixed integer programming model is presented for the problem. And then, a modified weight-combination search algorithm and a variable neighborhood search are employed to yield optimal or near-optimal schedule. To evaluate the performance of the proposed algorithms, computational experiments are performed on randomly generated test instances. Finally, computational results show that the proposed approaches obtain near-optimal solutions in a reasonable computational time even for large-sized problems
    corecore