6 research outputs found

    Improving Real-Time Data Dissemination Performance by Multi Path Data Scheduling in Data Grids

    Get PDF
    The performance of data grids for data intensive, real-time applications is highly dependent on the data dissemination algorithm employed in the system. Motivated by this fact, this study first formally defines the real-time splittable data dissemination problem (RTS/DDP) where data transfer requests can be routed over multiple paths to maximize the number of data transfers to be completed before their deadlines. Since RTS/DDP is proved to be NP-hard, four different heuristic algorithms, namely kSP/ESMP, kSP/BSMP, kDP/ESMP, and kDP/BSMP are proposed. The performance of these heuristic algorithms is analyzed through an extensive set of data grid system simulation scenarios. The simulation results reveal that a performance increase up to 8 % as compared to a very competitive single path data dissemination algorithm is possible

    An Online Scheduling Algorithm with Advance Reservation for Large-Scale Data Transfers

    Full text link

    Smart Grid Metering Networks: A Survey on Security, Privacy and Open Research Issues

    Get PDF
    Smart grid (SG) networks are newly upgraded networks of connected objects that greatly improve reliability, efficiency and sustainability of the traditional energy infrastructure. In this respect, the smart metering infrastructure (SMI) plays an important role in controlling, monitoring and managing multiple domains in the SG. Despite the salient features of SMI, security and privacy issues have been under debate because of the large number of heterogeneous devices that are anticipated to be coordinated through public communication networks. This survey paper shows a brief overview of real cyber attack incidents in traditional energy networks and those targeting the smart metering network. Specifically, we present a threat taxonomy considering: (i) threats in system-level security, (ii) threats and/or theft of services, and (iii) threats to privacy. Based on the presented threats, we derive a set of security and privacy requirements for SG metering networks. Furthermore, we discuss various schemes that have been proposed to address these threats, considering the pros and cons of each. Finally, we investigate the open research issues to shed new light on future research directions in smart grid metering networks

    Innovative big data integrationand analysis techniques for urban hazard management

    Get PDF
    PhD ThesisModern early warning systems (EWS) require sophisticated knowledge of natural hazards, the urban context and underlying risk factors to enable dynamic and timely decision making (e.g., hazard detection, hazard preparedness). Landslides are a common form of natural hazard with a global impact and are closely linked to a variety of other hazards. EWS for landslide prediction and detection relies on scienti c methods and models which require input from the time-series data, such as the earth observation (EO) and ancillary data. Such data sets are produced by a variety of remote sensing satellites and Internet of Things sensors which are deployed in landslide-prone areas. Besides, social media-based time-series data has played a signi cant role in modern disaster management. The emergence of social media has led to the possibility of the general public contributing to the monitoring of natural hazard by reporting incidents related to hazard events. To this end, the data integration and analysis of potential time-series data sources in EWS applications have become a challenge due to the complexity and high variety of data sources. Moreover, sophisticated domain knowledge of natural hazards and risk management are also required to enable dynamic and timely decision making about serious hazards. In this thesis, a comprehensive set of algorithmic techniques for managing high varieties of time series data from heterogeneous data sources is investigated. A novel ontology, namely Landslip Ontology, is proposed to provide a knowledge base that establishes the relationship between landslide hazard and EO and ancillary data sources to support data integration for EWS applications. Moreover, an ontology-based data integration and analytics system that includes human in the loop of hazard information acquisition from social media is proposed to establish a deeper and more accurate situational awareness of hazard events. Finally, the system is extended to enable an interaction between natural hazard EWS and electrical grid EWS to contribute to electrical grid network monitoring and support decision-making for electrical grid infrastructure management

    Flow scheduling and endpoint rate control in GridNetworks

    No full text
    International audienceIn grid networks, distributed resources, computing or storage elements as well as scientific instruments are interconnected to support computing-intensive and data-intensive applications. To facilitate the efficient scheduling of these resources,wepropose to manage the movements of massive data set between them. This paper formulates the bulk data transfer scheduling problem and presents an optimal solution to minimize the network congestion factor of a dedicated network or an isolated traffic class. The solution satisfying individual flows' time and volume constraints can be found in polynomial time and expressed as a set of multi-interval bandwidth allocation profiles. To ensure a large-scale deployment of this approach, we propose, for the data plane, a combination of a bandwidth profile enforcement mechanism with traditional transport protocols. The paper examines several solutions for implementing such a mechanism in a Linux kernel. The experimental evaluation shows that packet pacing performed at IP level offers a simple yet valuable and TCP-compatible solution for accurate bandwidth profile enforcement at very high speed
    corecore