63 research outputs found

    Finite element computation of magnetohydrodynamic nanofluid convection from an oscillating inclined plate with radiative flux, heat source and variable temperature effects

    Get PDF
    The present work describes finite element computations for radiative magnetohydrodynamic convective Newtonian nanofluid flow from an oscillating inclined porous plate with variable temperature. Heat source/sink and buoyancy effects are included in the mathematical model. The problem is formulated by employing Tiwari-Das nanofluid model and two water - based nanofluids with spherical shaped metal nano particles as copper and alumina are considered. The Brinkman and Maxwell-Garnetts models are used for the dynamic viscosity and effective thermal conductivity of the nanofluids respectively. An algebraic flux model, the Rosseland diffusion approximation is adopted to simulate thermal radiative flux effects. The dimensionless, coupled governing partial differential equations are numerically solved via the finite element method with weak variational formulation by imposing initial and boundary conditions with a weighted residual scheme. A grid independence study is also conducted. The finite element solutions are reduced to known previous solutions in some limiting cases of the present investigation and are found to be in good agreement with published work. This investigation is relevant to electromagnetic nanomaterial manufacturing processes operating at high temperatures where radiation heat transfer is significant

    Radiative and magnetohydrodynamics flow of third grade viscoelastic fluid past an isothermal inverted cone in the presence of heat generation/absorption

    Get PDF
    A mathematical analysis is presented to investigate the nonlinear, isothermal, steady-state, free convection boundary layer flow of an incompressible third grade viscoelastic fluid past an isothermal inverted cone in the presence of magnetohydrodynamic, thermal radiation and heat generation/absorption. The transformed conservation equations for linear momentum, heat and mass are solved numerically subject to the realistic boundary conditions using the second-order accurate implicit finite-difference Keller Box Method. The numerical code is validated with previous studies. Detailed interpretation of the computations is included. The present simulations are of interest in chemical engineering systems and solvent and low-density polymer materials processing

    Natural convection from a spinning cone in Casson fluid embedded in porous medium with injection, temperature dependent viscosity and thermal conductivity

    Get PDF
    ArticleIn the present study, a numerical analysis on natural convection Casson fluid flow from a spinning cone in porous medium with injection, temperature-dependent viscosity and thermal conductivity is considered. The surface of the cone is heated under linear surface temperature (LST). The boundary layer partial differential equations were converted into a system of ordinary differential equations which were then solved using spectral relaxation method (SRM). In this study, we study the effects of varying fluid parameters on logarithm of the SRM decoupling error. The results obtained in this study were compared with others in the literature and found to be in excellent agreement. The application of the SRM on a spinning cone has not been studied. The boundary layer velocity, temperature and concentration profiles are computed for different values of the physical parameters. In particular, the effect of the Casson parameter, spin parameter, Eckert number, temperature dependent viscosity parameter, thermal conductivity parameter on rotational velocity and temperature profiles was studied. Increasing the Casson and temperature-dependent viscosity parameters both reduce the logarithm of the SRM decoupling error. Increasing the Eckert and spin parameters both increase the logarithm of the SRM decoupling error

    Influence of variable viscosity and thermal conductivity, hydrodynamic and thermal slips on magnetohydrodynamic micropolar flow: a numerical study

    Get PDF
    Thermophysical and wall slip effects arise in many areas of nuclear technology. Motivated by such applications, in this article the collective influence ofvariable viscosity, thermal conductivity, velocity and thermal slipseffects on a steady two-dimensional magnetohydrodynamic microplar fluid over a stretching sheet are analyzednumerically. The governing nonlinear partial differential equations have been converted into a system of non-linear ordinary differential equations using suitable coordinate transformations. The numerical solutions of the problem are expressed in the form of non-dimensional velocityand temperature profiles and discussed from their graphical representations. Nachtsheim-Swigert shooting iteration technique together withthesixth order Runge-Kutta integration scheme has been applied for the numerical solution.A comparison with the existing results has been done and an excellent agreement is found.Further validation with adomian decomposition method is included for the general model. Interesting features in the heat and momentum characteristics are explored. It is found that greater thermal slip and thermal conductivity elevate thermal boundary layer thickness. Increasing Prandtl number enhances Nusselt number at the wall but reduces wall couple stress (micro-rotation gradient). Temperatures are enhanced with both magnetic field and viscosity parameter. Increasing momentum (hydrodynamic) slip is found to accelerate the flow and elevate temperatures
    • …
    corecore