3,143 research outputs found

    Mobile-IP ad-hoc network MPLS-based with QoS support.

    Get PDF
    The support for Quality of Service (QoS) is the main focus of this thesis. Major issues and challenges for Mobile-IP Ad-Hoc Networks (MANETs) to support QoS in a multi-layer manner are considered discussed and investigated through simulation setups. Different parameters contributing to the subjective measures of QoS have been considered and consequently, appropriate testbeds were formed to measure these parameters and compare them to other schemes to check for superiority. These parameters are: Maximum Round-Trip Delay (MRTD), Minimum Bandwidth Guaranteed (MBG), Bit Error Rate (BER), Packet Loss Ratio (PER), End-To-End Delay (ETED), and Packet Drop Ratio (PDR) to name a few. For network simulations, NS-II (Network Simulator Version II) and OPNET simulation software systems were used.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .A355. Source: Masters Abstracts International, Volume: 44-03, page: 1444. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    Multi Protocol Label Switching: Quality of Service, Traffic Engineering application, and Virtual Private Network application

    Get PDF
    This thesis discusses the QoS feature, Traffic Engineering (TE) application, and Virtual Private Network (VPN) application of the Multi Protocol Label Switching (MPLS) protocol. This thesis concentrates on comparing MPLS with other prominent technologies such as Internet Protocol (IP), Asynchronous Transfer Mode (ATM), and Frame Relay (FR). MPLS combines the flexibility of Internet Protocol (IP) with the connection oriented approach of Asynchronous Transfer Mode (ATM) or Frame Relay (FR). Section 1 lists several advantages MPLS brings over other technologies. Section 2 covers architecture and a brief description of the key components of MPLS. The information provided in Section 2 builds a background to compare MPLS with the other technologies in the rest of the sections. Since it is anticipate that MPLS will be a main core network technology, MPLS is required to work with two currently available QoS architectures: Integrated Service (IntServ) architecture and Differentiated Service (DiffServ) architecture. Even though the MPLS does not introduce a new QoS architecture or enhance the existing QoS architectures, it works seamlessly with both QoS architectures and provides proper QoS support to the customer. Section 3 provides the details of how MPLS supports various functions of the IntServ and DiffServ architectures. TE helps Internet Service Provider (ISP) optimize the use of available resources, minimize the operational costs, and maximize the revenues. MPLS provides efficient TE functions which prove to be superior to IP and ATM/FR. Section 4 discusses how MPLS supports the TE functionality and what makes MPLS superior to other competitive technologies. ATM and FR are still required as a backbone technology in some areas where converting the backbone to IP or MPLS does not make sense or customer demands simply require ATM or FR. In this case, it is important for MPLS to work with ATM and FR. Section 5 highlights the interoperability issues and solutions for MPLS while working in conjunction with ATM and FR. In section 6, various VPN tunnel types are discussed and compared with the MPLS VPN tunnel type. The MPLS VPN tunnel type is concluded as an optimal tunnel approach because it provides security, multiplexing, and the other important features that are reburied by the VPN customer and the ISP. Various MPLS layer 2 and layer 3 VPN solutions are also briefly discussed. In section 7 I conclude with the details of an actual implementation of a layer 3 MPLS VPN solution that works in conjunction with Border Gateway Protocol (BGP)

    Endpoint-transparent Multipath Transport with Software-defined Networks

    Full text link
    Multipath forwarding consists of using multiple paths simultaneously to transport data over the network. While most such techniques require endpoint modifications, we investigate how multipath forwarding can be done inside the network, transparently to endpoint hosts. With such a network-centric approach, packet reordering becomes a critical issue as it may cause critical performance degradation. We present a Software Defined Network architecture which automatically sets up multipath forwarding, including solutions for reordering and performance improvement, both at the sending side through multipath scheduling algorithms, and the receiver side, by resequencing out-of-order packets in a dedicated in-network buffer. We implemented a prototype with commonly available technology and evaluated it in both emulated and real networks. Our results show consistent throughput improvements, thanks to the use of aggregated path capacity. We give comparisons to Multipath TCP, where we show our approach can achieve a similar performance while offering the advantage of endpoint transparency

    Topological Design of Multiple Virtual Private Networks UTILIZING SINK-TREE PATHS

    Get PDF
    With the deployment of MultiProtocol Label Switching (MPLS) over a core backbone networks, it is possible for a service provider to built Virtual Private Networks (VPNs) supporting various classes of services with QoS guarantees. Efficiently mapping the logical layout of multiple VPNs over a service provider network is a challenging traffic engineering problem. The use of sink-tree (multipoint-to-point) routing paths in a MPLS network makes the VPN design problem different from traditional design approaches where a full-mesh of point-to-point paths is often the choice. The clear benefits of using sink-tree paths are the reduction in the number of label switch paths and bandwidth savings due to larger granularities of bandwidth aggregation within the network. In this thesis, the design of multiple VPNs over a MPLS-like infrastructure network, using sink-tree routing, is formulated as a mixed integer programming problem to simultaneously find a set of VPN logical topologies and their dimensions to carry multi-service, multi-hour traffic from various customers. Such a problem formulation yields a NP-hard complexity. A heuristic path selection algorithm is proposed here to scale the VPN design problem by choosing a small-but-good candidate set of feasible sink-tree paths over which the optimal routes and capacity assignments are determined. The proposed heuristic has clearly shown to speed up the optimization process and the solution can be obtained within a reasonable time for a realistic-size network. Nevertheless, when a large number of VPNs are being layout simultaneously, a standard optimization approach has a limited scalability. Here, the heuristics termed the Minimum-Capacity Sink-Tree Assignment (MCSTA) algorithm proposed to approximate the optimal bandwidth and sink-tree route assignment for multiple VPNs within a polynomial computational time. Numerical results demonstrate the MCSTA algorithm yields a good solution within a small error and sometimes yields the exact solution. Lastly, the proposed VPN design models and solution algorithms are extended for multipoint traffic demand including multipoint-to-point and broadcasting connections
    • …
    corecore