244 research outputs found

    A review of pzt patches applications in submerged systems

    Get PDF
    Submerged systems are found in many engineering, biological, and medicinal applications. For such systems, due to the particular environmental conditions and working medium, the research on the mechanical and structural properties at every scale (from macroscopic to nanoscopic), and the control of the system dynamics and induced effects become very difficult tasks. For such purposes in submerged systems, piezoelectric patches (PZTp), which are light, small and economic, have been proved to be a very good solution. PZTp have been recently used as sensors/actuators for applications such as modal analysis, active sound and vibration control, energy harvesting and atomic force microscopes in submerged systems. As a consequence, in these applications, newly developed transducers based on PZTp have become the most used ones, which has improved the state of the art and methods used in these fields. This review paper carefully analyzes and summarizes these applications particularized to submerged structures and shows the most relevant results and findings, which have been obtained thanks to the use of PZTp.Peer ReviewedPostprint (published version

    Toward Small-Scale Wind Energy Harvesting: Design, Enhancement, Performance Comparison, and Applicability

    Full text link
    © 2017 Liya Zhao and Yaowen Yang. The concept of harvesting ambient energy as an alternative power supply for electronic systems like remote sensors to avoid replacement of depleted batteries has been enthusiastically investigated over the past few years. Wind energy is a potential power source which is ubiquitous in both indoor and outdoor environments. The increasing research interests have resulted in numerous techniques on small-scale wind energy harvesting, and a rigorous and quantitative comparison is necessary to provide the academic community a guideline. This paper reviews the recent advances on various wind power harvesting techniques ranging between cm-scaled wind turbines and windmills, harvesters based on aeroelasticities, and those based on turbulence and other types of working principles, mainly from a quantitative perspective. The merits, weaknesses, and applicability of different prototypes are discussed in detail. Also, efficiency enhancing methods are summarized from two aspects, that is, structural modification aspect and interface circuit improvement aspect. Studies on integrating wind energy harvesters with wireless sensors for potential practical uses are also reviewed. The purpose of this paper is to provide useful guidance to researchers from various disciplines interested in small-scale wind energy harvesting and help them build a quantitative understanding of this technique

    Toward Small-Scale Wind Energy Harvesting: Design, Enhancement, Performance Comparison, and Applicability

    Get PDF

    Available Technologies and Commercial Devices to Harvest Energy by Human Trampling in Smart Flooring Systems: a Review

    Get PDF
    Technological innovation has increased the global demand for electrical power and energy. Accordingly, energy harvesting has become a research area of primary interest for the scientific community and companies because it constitutes a sustainable way to collect energy from various sources. In particular, kinetic energy generated from human walking or vehicle movements on smart energy floors represents a promising research topic. This paper aims to analyze the state-of-art of smart energy harvesting floors to determine the best solution to feed a lighting system and charging columns. In particular, the fundamentals of the main harvesting mechanisms applicable in this field (i.e., piezoelectric, electromagnetic, triboelectric, and relative hybrids) are discussed. Moreover, an overview of scientific works related to energy harvesting floors is presented, focusing on the architectures of the developed tiles, the transduction mechanism, and the output performances. Finally, a survey of the commercial energy harvesting floors proposed by companies and startups is reported. From the carried-out analysis, we concluded that the piezoelectric transduction mechanism represents the optimal solution for designing smart energy floors, given their compactness, high efficiency, and absence of moving parts

    Design and optimization of piezoelectric MEMS vibration energy harvesters

    Get PDF
    Low-power electronic applications are normally powered by batteries, which have to deal with stringent lifetime and size constraints. To enhance operational autonomy, energy harvesting from ambient vibration by micro-electromechanical systems (MEMS) has been identified as a promising solution to this universal problem. In this thesis, multiple configurations for MEMS-based piezoelectric energy harvesters are studied. To enhance their performances, automated design and optimization methodologies with minimum human efforts are proposed. Firstly, the analytic equations to estimate resonant frequency and amplitude of the harvested voltage for two different configurations of unimorph MEMS piezoelectric harvesters (i.e., with and without integration of a proof mass) are presented with their accuracy validated by using finite element method (FEM) simulation and prototype measurement. Thanks to their high accuracy, we use these analytic equations as fitness functions of genetic algorithm (GA), an evolutionary computation method for optimization problems by mimicking biological evolution. By leveraging the micro-fabrication process, we demonstrate that the GA can optimize the mechanical geometry of the prototyped harvester effectively and efficiently, whose peak harvested voltage increases from 310 mV to 1900 mV at the reduced resonant frequency from 886 Hz to 425 Hz with the highest normalized voltage density of 163.88 among the alternatives. With an intention of promoting uniform stress distribution along the piezoelectric cantilever and providing larger area for placing proof masses, in this thesis a T-shaped cantilever structure with two degrees-of-freedom (DOF) is proposed. Thanks to this special configuration, a considerable amount of stress/strain can be obtained from the tip part of the structure during the vibration, in addition to the anchor region. An analytic model for computing the frequency response of the proposed structure is derived, and the harvester performance is studied analytically, numerically and experimentally. The conventional MEMS energy harvesters can only generate voltage disadvantageously in a narrow bandwidth at higher frequencies. Therefore, in this thesis we further propose a piezoelectric MEMS harvester with the capability of vibrating in multiple DOF, whose operational bandwidth is enhanced by taking advantage of both multimodal and nonlinear mechanisms. The proposed harvester has a symmetric structure with a doubly-clamped configuration enclosing three proof masses in distinct locations. Thanks to the uniform mass distribution, the energy harvesting efficiency can be considerably enhanced. To determine the optimum geometry for the preferred nonlinear behavior, we have also used optimization methodology based on GA. The prototype measurements demonstrate that our proposed piezoelectric MEMS harvester is able to generate voltage at 227 Hz (the first mode), 261.8 Hz (the second mode), and 286 Hz (the third mode). When the device operates at its second mode frequency, nonlinear behavior can be obtained with extremely small magnitude of base excitation (i.e., 0.2 m/s²). Its normalized power density (NPD) of 595.12 (μW·cm⁻³·m⁻²·s⁴) is found to be superior to any previously reported piezoelectric MEMS harvesters in the literature. In this dissertation, we also propose a piezoelectric MEMS vibration energy harvester with the capability of oscillating at ultralow (i.e., less than 200 Hz) resonant frequency. The mechanical structure of the proposed harvester is comprised of a doubly clamped cantilever with a serpentine pattern associated with several discrete masses. In order to obtain the optimal physical aspects of the harvester and speed up the design process, we have utilized a deep neural network, as an artificial intelligence (AI) method. Firstly, the deep neural network was trained, and then this trained network was integrated with the GA to optimize the harvester geometry to enhance its performance in terms of both resonant frequency and generated voltage. Our numerical results confirm that the accuracy of the network in prediction is above 90%. As a result, by taking advantage of this efficient AI-based performance estimator, the GA is able to reduce the device resonant frequency from 169Hz to 110.5Hz and increase its efficiency on harvested voltage from 2.5V to 3.4V under 0.25g excitation. To improve both durability and energy conversion efficiency of the piezoelectric MEMS harvesters, we further propose a curve-shaped anchoring scheme in this thesis. A doubly clamped curve beam with a mass at its center is considered as an anchor, while a straight beam with proof mass is integrated to the center of this anchor. To assess the fatigue damage, which is actually critical to the micro-sized silicon-based piezoelectric harvesters, we have utilized the Coffin-Manson method and FEM to study the fatigue lifetime of the proposed geometry comprehensively. Our proposed piezoelectric harvester has been fabricated and its capability in harnessing the vibration energy has been examined numerically and experimentally. It is found that the harvested energy can be enlarged by a factor of 2.66, while this improvement is gained by the resonant frequency reduction and failure force magnitude enlargement, in comparison with the conventional geometry of the piezoelectric MEMS harvesters

    Direct Scaling of Measure on Vortex Shedding through a Flapping Flag Device in the Open Channel around a Cylinder at Re ∼ 10^3: Taylor’s Law Approach.

    Get PDF
    none8noThe problem of vortex shedding, which occurs when an obstacle is placed in a regular flow, is governed by Reynolds and Strouhal numbers, known by dimensional analysis. The present work aims to propose a thin films-based device, consisting of an elastic piezoelectric flapping flag clamped at one end, in order to determine the frequency of vortex shedding downstream an obstacle for a flow field at Reynolds number Re∼103 in the open channel. For these values, Strouhal number obtained in such way is in accordance with the results known in literature. Moreover, the development of the voltage over time, generated by the flapping flag under the load due to flow field, shows a highly fluctuating behavior and satisfies Taylor’s law, observed in several complex systems. This provided useful information about the flow field through the constitutive law of the device.openSamuele De Bartolo, Massimo De Vittorio, Antonio Francone, Francesco Guido, Elisa Leone, Vincenzo Mariano Mastronardi, Andrea Notaro, Giuseppe Roberto TomasicchioDE BARTOLO, Samuele; DE VITTORIO, Massimo; Francone, Antonio; Guido, Francesco; Leone, Elisa; Mariano Mastronardi, Vincenzo; Notaro, Andrea; Tomasicchio, Giusepp

    Microwatt energy harvesting by exploiting flow-induced vibration

    Get PDF
    The green technology approaches by harvesting energy from aerodynamic flowinduced vibrations using a flexible square cylinder is experimentally investigated. The practicability of flow-induced vibration system to supply a sufficient base excitation vibration in microwatt scale is evaluated through a series of wind tunnel tests with different velocities. Test are performed for high Reynolds number 3.9 × 103≤ Re 1.4 × 104 and damping ratio ζ = 0.0052. The experiment setup is able to replicate the pattern of vibration amplitude for isolated square cylinder with previous available study. Then, the experimental setup is used to study the effect of vibration cylinder in harvesting the fluid energy. A prototype of electromagnetic energy harvesting is invented and fabricated to test its performance in the wind tunnel test. Test results reveal that the harnessed power is corresponding to vibration amplitude flow pattern, but the power obtained is much lower than the vibration amplitude due to the power dissipation at the resistor. The best condition for harnessing power is identified at UR = 7.7 where the Karman Vortex-Induced Vibration (KVIV) is the largest

    Modeling and Simulation of a Fluttering Cantilever in Channel Flow

    Get PDF
    Characterizing the dynamics of a cantilever in channel flow is relevant to applications ranging from snoring to energy harvesting. Aeroelastic flutter induces large oscillating amplitudes and sharp changes with frequency that impact the operation of these systems. The fluid-structure mechanisms that drive flutter can vary as the system parameters change, with the stability boundary becoming especially sensitive to the channel height and Reynolds number, especially when either or both are small. In this paper, we develop a coupled fluid-structure model for viscous, two-dimensional channel flow of arbitrary shape. Its flutter boundary is then compared to results of two-dimensional direct numerical simulations to explore the model's validity. Provided the non-dimensional channel height remains small, the analysis shows that the model is not only able to replicate DNS results within the parametric limits that ensure the underlying assumptions are met, but also over a wider range of Reynolds numbers and fluid-structure mass ratios. Model predictions also converge toward an inviscid model for the same geometry as Reynolds number increases
    corecore