378 research outputs found

    Intrusion detection in IoT networks using machine learning

    Get PDF
    The exponential growth of Internet of Things (IoT) infrastructure has introduced significant security challenges due to the large-scale deployment of interconnected devices. IoT devices are present in every aspect of our modern life; they are essential components of Industry 4.0, smart cities, and critical infrastructures. Therefore, the detection of attacks on this platform becomes necessary through an Intrusion Detection Systems (IDS). These tools are dedicated hardware devices or software that monitors a network to detect and automatically alert the presence of malicious activity. This study aimed to assess the viability of Machine Learning Models for IDS within IoT infrastructures. Five classifiers, encompassing a spectrum from linear models like Logistic Regression, Decision Trees from Trees Algorithms, Gaussian Naïve Bayes from Probabilistic models, Random Forest from ensemble family and Multi-Layer Perceptron from Artificial Neural Networks, were analysed. These models were trained using supervised methods on a public IoT attacks dataset, with three tasks ranging from binary classification (determining if a sample was part of an attack) to multiclassification of 8 groups of attack categories and the multiclassification of 33 individual attacks. Various metrics were considered, from performance to execution times and all models were trained and tuned using cross-validation of 10 k-folds. On the three classification tasks, Random Forest was found to be the model with best performance, at expenses of time consumption. Gaussian Naïve Bayes was the fastest algorithm in all classification¿s tasks, but with a lower performance detecting attacks. Whereas Decision Trees shows a good balance between performance and processing speed. Classifying among 8 attack categories, most models showed vulnerabilities to specific attack types, especially those in minority classes due to dataset imbalances. In more granular 33 attack type classifications, all models generally faced challenges, but Random Forest remained the most reliable, despite vulnerabilities. In conclusion, Machine Learning algorithms proves to be effective for IDS in IoT infrastructure, with Random Forest model being the most robust, but with Decision Trees offering a good balance between speed and performance.Objectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructur

    Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics

    Get PDF
    Botnets are some of the most recurrent cyber-threats, which take advantage of the wide heterogeneity of endpoint devices at the Edge of the emerging communication environments for enabling the malicious enforcement of fraud and other adversarial tactics, including malware, data leaks or denial of service. There have been significant research advances in the development of accurate botnet detection methods underpinned on supervised analysis but assessing the accuracy and performance of such detection methods requires a clear evaluation model in the pursuit of enforcing proper defensive strategies. In order to contribute to the mitigation of botnets, this paper introduces a novel evaluation scheme grounded on supervised machine learning algorithms that enable the detection and discrimination of different botnets families on real operational environments. The proposal relies on observing, understanding and inferring the behavior of each botnet family based on network indicators measured at flow-level. The assumed evaluation methodology contemplates six phases that allow building a detection model against botnet-related malware distributed through the network, for which five supervised classifiers were instantiated were instantiated for further comparisons—Decision Tree, Random Forest, Naive Bayes Gaussian, Support Vector Machine and K-Neighbors. The experimental validation was performed on two public datasets of real botnet traffic—CIC-AWS-2018 and ISOT HTTP Botnet. Bearing the heterogeneity of the datasets, optimizing the analysis with the Grid Search algorithm led to improve the classification results of the instantiated algorithms. An exhaustive evaluation was carried out demonstrating the adequateness of our proposal which prompted that Random Forest and Decision Tree models are the most suitable for detecting different botnet specimens among the chosen algorithms. They exhibited higher precision rates whilst analyzing a large number of samples with less processing time. The variety of testing scenarios were deeply assessed and reported to set baseline results for future benchmark analysis targeted on flow-based behavioral patterns

    Enriched Model of Case Based Reasoning and Neutrosophic Intelligent System for DDoS Attack Defence in Software Defined Network based Cloud

    Get PDF
    Software Defined Networking in Cloud paradigm is most suitable for dynamic functionality and reduces the computation complexity. The routers and switches located at the network's boundaries are managed by software-defined netwrking (SDN) using open protocols and specialised open programmable interfaces. But the security threats often degrade the performance of SDN due to its constraints of resource usage. The most sensitive components which are vulnerable to DDoS attacks are controller and control plane bandwidth. The existing conventional classification algorithms lacks in detection of new or unknown traffic packets which are malicious and results in degradation of SDN performance in cloud resources. Hence, in this paper double filtering methodology is devised to detect both known and unknown pattern of malicious packets which affects the bandwidth of the control panel and the controller. The case-based reasoning is adapted for determining the known incoming traffic patterns before entering the SDN system. It classifies the packets are normal or abnormal based on the previous information gathered. The traffic patterns which is not matched from the previous patterns is treated as indeterministic packet and it is defined more precisely using the triplet representation of Neutrosophic intelligent system. The grade of belongingness, non-belongingness and indeterminacyis used as the main factors to detect the new pattern of attacking packets more effectively. From the experimental outcomes it is proved that DDoS attack detection in SDN based cloud environment is improved by adopting CBR-NIS compared to the existing classification model

    Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics

    Get PDF
    Botnets are some of the most recurrent cyber-threats, which take advantage of the wide heterogeneity of endpoint devices at the Edge of the emerging communication environments for enabling the malicious enforcement of fraud and other adversarial tactics, including malware, data leaks or denial of service. There have been significant research advances in the development of accurate botnet detection methods underpinned on supervised analysis but assessing the accuracy and performance of such detection methods requires a clear evaluation model in the pursuit of enforcing proper defensive strategies. In order to contribute to the mitigation of botnets, this paper introduces a novel evaluation scheme grounded on supervised machine learning algorithms that enable the detection and discrimination of different botnets families on real operational environments. The proposal relies on observing, understanding and inferring the behavior of each botnet family based on network indicators measured at flow-level. The assumed evaluation methodology contemplates six phases that allow building a detection model against botnet-related malware distributed through the network, for which five supervised classifiers were instantiated were instantiated for further comparisons—Decision Tree, Random Forest, Naive Bayes Gaussian, Support Vector Machine and K-Neighbors. The experimental validation was performed on two public datasets of real botnet traffic—CIC-AWS-2018 and ISOT HTTP Botnet. Bearing the heterogeneity of the datasets, optimizing the analysis with the Grid Search algorithm led to improve the classification results of the instantiated algorithms. An exhaustive evaluation was carried out demonstrating the adequateness of our proposal which prompted that Random Forest and Decision Tree models are the most suitable for detecting different botnet specimens among the chosen algorithms. They exhibited higher precision rates whilst analyzing a large number of samples with less processing time. The variety of testing scenarios were deeply assessed and reported to set baseline results for future benchmark analysis targeted on flow-based behavioral patterns

    Encryption-agnostic classifiers of traffic originators and their application to anomaly detection

    Get PDF
    This paper presents an approach that leverages classical machine learning techniques to identify the tools from the packets sniffed, both for clear-text and encrypted traffic. This research aims to overcome the limitations to security monitoring systems posed by the widespread adoption of encrypted communications. By training three distinct classifiers, this paper shows that it is possible to detect, with excellent accuracy, the category of tools that generated the analyzed traffic (e.g., browsers vs. network stress tools), the actual tools (e.g., Firefox vs. Chrome vs. Edge), and the individual tool versions (e.g., Chrome 48 vs. Chrome 68). The paper provides hints that the classifiers are helpful for early detection of Distributed Denial of Service (DDoS) attacks, duplication of entire websites, and identification of sudden changes in users’ behavior, which might be the consequence of malware infection or data exfiltration

    A toolbox for Artificial Intelligence Algorithms in Cyber Attacks Prevention and Detection

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Information Systems and Technologies ManagementThis Thesis provides a qualitative view on the usage of AI technology in cybersecurity strategy of businesses. It explores the field of AI technology today, and how it is a good technology to implement into Cyber Security. The Internet and Informational technology have transformed the world of today. There is no doubt that it has created huge opportunities for global economy and humanity. The fact that Businesses of today is thoroughly dependent on the Internet and Information Systems has also exposed new vulnerabilities in terms of cybercrimes performed by a diversity of hackers, criminals, terrorists, the state and the non-state actors. All Public, private companies and government agencies are vulnerable for cybercrimes, none is left fully protected. In the recent years AI and machine learning technology have become essential to information security, since these technologies can analyze swiftly millions of datasets and tracking down a wide range of cyber threats. Alongside With the increasingly growth of automation in businesses, is it realistic that cybersecurity can be removed from human interaction into fully independent AI Applications to cover the businesses Information System Architecture of businesses in the future? This is a very interesting field those resources really need to deep into to be able to fully take advantage of the fully potential of AI technology in the usage in the field of cybersecurity. This thesis will explore the usage of AI algorithms in the prevention and detection of cyberattack in businesses and how to optimize its use. This knowledge will be used to implement a framework and a corresponding hybrid toolbox application that its purpose is be to be useful in every business in terms of strengthening the cybersecurity environment

    Knowledge acquisition for autonomic network management in emerging self-organizing architectures

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Ingeniería del Software e Inteligencia Artificial, leída el 19/12/2018Los escenarios de red emergentes estan caracterizados por el acceso intensivo a una amplia gama de servicios y aplicaciones que han incrementado las exigencias de las redes de comunicacion. Los modelos de gestion de red tradicionales se han caracterizado a su vez por una alta dependencia del factor humano para llevar a cabo tareas de configuracion y mantenimiento de la red. Esta situacion se ha hecho menos sostenible en las redes moviles no solo por los costes operacionales y de inversion de capital asociados, sino tambien por la complejidad que estas han adquirido ante la inmersion exponencial de dispositivos moviles. Tales aspectos han motivado el surgimiento de la quinta generacion de redes moviles, caracterizadas por indicadores de desempeño ambiciosos que deben cumplirse para satisfacer los niveles de servicio acordados...Emerging network scenarios are characterized by intensive access to a wide range of services and applications that have increased the demands of communication networks. The traditional network management models have been characterized by a high dependence on the human factor to carry out network configuration and maintenance tasks. This situation has become less sustainable in mobile networks not only due to the associated operational (COPEX) and capital investment costs (CAPEX), but also due to the complexity they have acquired when facing the exponential immersion of mobile devices. These aspects have led to the emergence of the fifth generation of mobile networks, characterized by ambitious performance indicators that must be fulfilled to meet the agreed service levels...Fac. de InformáticaTRUEunpu
    • …
    corecore