68,789 research outputs found

    Dynamic Information Flow Tracking on Multicores

    Get PDF
    Dynamic Information Flow Tracking (DIFT) is a promising technique for detecting software attacks. Due to the computationally intensive nature of the technique, prior efficient implementations [21, 6] rely on specialized hardware support whose only purpose is to enable DIFT. Alternatively, prior software implementations are either too slow [17, 15] resulting in execution time increases as much as four fold for SPEC integer programs or they are not transparent [31] requiring source code modifications. In this paper, we propose the use of chip multiprocessors (CMP) to perform DIFT transparently and efficiently. We spawn a helper thread that is scheduled on a separate core and is only responsible for performing information flow tracking operations. This entails the communication of registers and flags between the main and helper threads. We explore software (shared memory) and hardware (dedicated interconnect) approaches to enable this communication. Finally, we propose a novel application of the DIFT infrastructure where, in addition to the detection of the software attack, DIFT assists in the process of identifying the cause of the bug in the code that enabled the exploit in the first place. We conducted detailed simulations to evaluate the overhead for performing DIFT and found that to be 48 % for SPEC integer programs

    The engineering design integration (EDIN) system

    Get PDF
    A digital computer program complex for the evaluation of aerospace vehicle preliminary designs is described. The system consists of a Univac 1100 series computer and peripherals using the Exec 8 operating system, a set of demand access terminals of the alphanumeric and graphics types, and a library of independent computer programs. Modification of the partial run streams, data base maintenance and construction, and control of program sequencing are provided by a data manipulation program called the DLG processor. The executive control of library program execution is performed by the Univac Exec 8 operating system through a user established run stream. A combination of demand and batch operations is employed in the evaluation of preliminary designs. Applications accomplished with the EDIN system are described

    Online optimal flux-weakening control of permanent-magnet brushless AC drives

    Get PDF
    An enhanced online optimal control strategy, which maximizes the flux-weakening performance of a brushless AC motor, is described, and applied to motors having different rotor topologies: interior (radial or circumferential), inset, and surface-mounted magnet. It enables the maximum inherent power capability of a brushless AC motor to be achieved independent of any variation in its parameters, and facilitates maximum efficiency over the entire speed range. It also results in good transient dynamic performance, since it is coupled with feedforward vector control based on optimal current profiles

    Event-Driven Network Model for Space Mission Optimization with High-Thrust and Low-Thrust Spacecraft

    Get PDF
    Numerous high-thrust and low-thrust space propulsion technologies have been developed in the recent years with the goal of expanding space exploration capabilities; however, designing and optimizing a multi-mission campaign with both high-thrust and low-thrust propulsion options are challenging due to the coupling between logistics mission design and trajectory evaluation. Specifically, this computational burden arises because the deliverable mass fraction (i.e., final-to-initial mass ratio) and time of flight for low-thrust trajectories can can vary with the payload mass; thus, these trajectory metrics cannot be evaluated separately from the campaign-level mission design. To tackle this challenge, this paper develops a novel event-driven space logistics network optimization approach using mixed-integer linear programming for space campaign design. An example case of optimally designing a cislunar propellant supply chain to support multiple lunar surface access missions is used to demonstrate this new space logistics framework. The results are compared with an existing stochastic combinatorial formulation developed for incorporating low-thrust propulsion into space logistics design; our new approach provides superior results in terms of cost as well as utilization of the vehicle fleet. The event-driven space logistics network optimization method developed in this paper can trade off cost, time, and technology in an automated manner to optimally design space mission campaigns.Comment: 38 pages; 11 figures; Journal of Spacecraft and Rockets (Accepted); previous version presented at the AAS/AIAA Astrodynamics Specialist Conference, 201
    corecore