960 research outputs found

    Data-driven Soft Sensors in the Process Industry

    Get PDF
    In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work

    Events Recognition System for Water Treatment Works

    Get PDF
    The supply of drinking water in sufficient quantity and required quality is a challenging task for water companies. Tackling this task successfully depends largely on ensuring a continuous high quality level of water treatment at Water Treatment Works (WTW). Therefore, processes at WTWs are highly automated and controlled. A reliable and rapid detection of faulty sensor data and failure events at WTWs processes is of prime importance for its efficient and effective operation. Therefore, the vast majority of WTWs operated in the UK make use of event detection systems that automatically generate alarms after the detection of abnormal behaviour on observed signals to ensure an early detection of WTW’s process failures. Event detection systems usually deployed at WTWs apply thresholds to the monitored signals for the recognition of WTW’s faulty processes. The research work described in this thesis investigates new methods for near real-time event detection at WTWs by the implementation of statistical process control and machine learning techniques applied for an automated near real-time recognition of failure events at WTWs processes. The resulting novel Hybrid CUSUM Event Recognition System (HC-ERS) makes use of new online sensor data validation and pre-processing techniques and utilises two distinct detection methodologies: first for fault detection on individual signals and second for the recognition of faulty processes and events at WTWs. The fault detection methodology automatically detects abnormal behaviour of observed water quality parameters in near real-time using the data of the corresponding sensors that is online validated and pre-processed. The methodology utilises CUSUM control charts to predict the presence of faults by tracking the variation of each signal individually to identify abnormal shifts in its mean. The basic CUSUM methodology was refined by investigating optimised interdependent parameters for each signal individually. The combined predictions of CUSUM fault detection on individual signals serves the basis for application of the second event detection methodology. The second event detection methodology automatically identifies faults at WTW’s processes respectively failure events at WTWs in near real-time, utilising the faults detected by CUSUM fault detection on individual signals beforehand. The method applies Random Forest classifiers to predict the presence of an event at WTW’s processes. All methods have been developed to be generic and generalising well across different drinking water treatment processes at WTWs. HC-ERS has proved to be effective in the detection of failure events at WTWs demonstrated by the application on real data of water quality signals with historical events from a UK’s WTWs. The methodology achieved a peak F1 value of 0.84 and generates 0.3 false alarms per week. These results demonstrate the ability of method to automatically and reliably detect failure events at WTW’s processes in near real-time and also show promise for practical application of the HC-ERS in industry. The combination of both methodologies presents a unique contribution to the field of near real-time event detection at WTW

    Predictive Diagnosis Based on Predictor Symptoms for Isolated Photovoltaic Systems Using MPPT Charge Regulators

    Full text link
    [EN] In this work, new results are presented on the implementation of predictive diagnosis techniques on isolated photovoltaic (PV) systems and installations. The novelties introduced in this research focus on the additional advantages obtained from the point of view of predictive diagnosis of faults caused by partial shading in isolated PV installations using maximum power point tracking (MPPT) regulators. MPPT regulators are comparatively more appropriate than pulse width modulation (PWM) solar regulators in order to implement fault diagnosis systems. MPPT regulators have a physical separation between the electrical parameters belonging to the part of the solar panel with respect to the batteries part. Therefore, these electrical parameters can be used to obtain early predictive symptoms of the effects of partial shading with a greater level of observation and sensitivity. Additionally, modifications are proposed in the PV system assembly to obtain greater homogeneity of all the panels regarding the solar irradiance reception angle.García Moreno, E.; Quiles Cucarella, E.; Correcher Salvador, A.; Morant Anglada, FJ. (2022). Predictive Diagnosis Based on Predictor Symptoms for Isolated Photovoltaic Systems Using MPPT Charge Regulators. Sensors. 22(20):1-33. https://doi.org/10.3390/s22207819133222

    Vision-based Propeller Damage Inspection Using Machine Learning

    Get PDF
    Unmanned Aerial Vehicles (UAVs) play an increasingly pivotal role in day-to-day rescue operations, offering crucial aerial support in challenging terrain and emergencies, such as drowning. Drone hangars are strategically deployed to ensure swift response in remote locations, overcoming range-limiting constraints posed by battery capacity. However, the UAV's airworthiness, typically ensured through conventional inspections by a technical individual, is paramount to guarantee mission safety. Over time, UAVs are prone to degradation through contact with the external environment, with propellers often being the cause of flight instability and potential crashes. This paper presents an innovative approach to automate UAV propeller inspection to avert incidents preemptively. Leveraging visual recordings and deep learning methodologies, we train a Convolutional Neural Network (CNN) model using both passive and active learning strategies. Our approach successfully detects physical damage on propellers with an impressive accuracy of 85.8%, promising a significant improvement in maintaining UAV flight safety and effectiveness in rescue operations

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Process Fault Diagnosis for Continuous Dynamic Systems Over Multivariate Time Series

    Get PDF
    Fault diagnosis in continuous dynamic systems can be challenging, since the variables in these systems are typically characterized by autocorrelation, as well as time variant parameters, such as mean vectors, covariance matrices, and higher order statistics, which are not handled well by methods designed for steady state systems. In dynamic systems, steady state approaches are extended to deal with these problems, essentially through feature extraction designed to capture the process dynamics from the time series. In this chapter, recent advances in feature extraction from signals or multivariate time series are reviewed. These methods can subsequently be considered in a classical statistical monitoring framework, such as used for steady state systems. In addition, an extension of nonlinear signal processing based on the use of unthresholded or global recurrence quantification analysis is discussed, where two multivariate image methods based on gray level co-occurrence matrices and local binary patterns are used to extract features from time series. When considering the well-known simulated Tennessee Eastman process in chemical engineering, it is shown that time series features obtained with this approach can be an effective means of discriminating between different fault conditions in the system. The approach provides a general framework that can be extended in multiple ways to time series analysis

    Rapid gravity filtration operational performance assessment and diagnosis for preventative maintenance from on-line data

    Get PDF
    Rapid gravity filters, the final particulate barrier in many water treatment systems, are typically monitored using on-line turbidity, flow and head loss instrumentation. Current metrics for assessing filtration performance from on-line turbidity data were critically assessed and observed not to effectively and consistently summarise the important properties of a turbidity distribution and the associated water quality risk. In the absence of a consistent risk function for turbidity in treated water, using on-line turbidity as an indicative rather than a quantitative variable appears to be more practical. Best practice suggests that filtered water turbidity should be maintained below 0.1 NTU, at higher turbidity we can be less confident of an effective particle and pathogen barrier. Based on this simple distinction filtration performance has been described in terms of reliability and resilience by characterising the likelihood, frequency and duration of turbidity spikes greater than 0.1 NTU. This view of filtration performance is then used to frame operational diagnosis of unsatisfactory performance in terms of a machine learning classification problem. Through calculation of operationally relevant predictor variables and application of the Classification and Regression Tree (CART) algorithm the conditions associated with the greatest risk of poor filtration performance can be effectively modelled and communicated in operational terms. This provides a method for an evidence based decision support which can be used to efficiently manage individual pathogen barriers in a multi-barrier system

    Probability density function of bubble size based reagent dosage predictive control for copper roughing flotation

    Get PDF
    As an effective measurement indicator of bubble stability, bubble size structure is believed to be closely related to flotation performance in copper roughing flotation. Moreover, reagent dosage has a very important influence on bubble size structure. In this paper, a novel reagent dosage predictive control method based on probability density function (PDF) of bubble size is proposed to implement the indices of roughing circuit. Firstly, the froth images captured in the copper roughing are segmented by using a two-pass watershed algorithm. In order to characterize bubble size structure with non-Gaussian feature, an entropy based B-spline estimator is hence investigated to depict the PDF of the bubble size. Since the weights of B-spline are interrelated and related to the reagent dosage, a multi-output least square support vector machine (MLS-SVM) is applied to depict a dynamic relationship between the weights and the reagent dosage. Finally, an entropy based optimization algorithm is proposed to determine reagent dosage in order to implement tracking control for the PDF of the output bubble size. Experimental results can show the effectiveness of the proposed method

    Modeling and fault detection of an industrial copper electrowinning process

    Get PDF
    Copper electrowinning plants are where high purity copper (Cu) product is obtained through electrochemical reduction of copper from the leaching solution. The presence selenium (Se) and tellurium (Te) in copper sulphide minerals may result in contamination of the leach solution and, eventually of the copper cathode. Unfortunately, hydrometallurgical processes are often difficult to monitor and control due to day-to-day fluctuations in the process as well as limitations in capturing the data at high frequencies. The purpose of this work is to model key variables in the copper electrowinning tank and to apply statistical fault detection to the selenium/tellurium removal and copper electrowinning process operations. First principle modeling was applied to the copper electrowinning tank and partial differential equation models were derived to describe the process dynamics. Industrial data were used to estimate the model parameters and validate the resulting models. Comparison with industrial model shows that the models fit reasonably well with industrial operation. Simulations of the models were run to explore the dynamics under varying operating conditions. The derived models provide a useful tool for future process modification and control development. Using the collected industrial operating data, dynamic principal component analysis (DPCA) based fault detection was applied to Se/Te removal and copper electrowinning processes at Vale’s Electrowinning Plant in Copper Cliff, ON. The fault detection results from the DPCA based approach were consistent with the industrial product quality test. After faults were detected, fault diagnosis was then applied to determine the causes of faults. The fault detection and diagnosis system helps define causes of upset conditions that lead to coppercathode contamination.Master of Applied Science (M.A.Sc.) in Natural Resources Engineerin
    corecore