673 research outputs found

    Change detection in multitemporal synthetic aperture radar images using dual-channel convolutional neural network

    Get PDF
    This paper proposes a model of dual-channel convolutional neural network (CNN) that is designed for change detection in SAR images, in an effort to acquire higher detection accuracy and lower misclassification rate. This network model contains two parallel CNN channels, which can extract deep features from two multitemporal SAR images. For comparison and validation, the proposed method is tested along with other change detection algorithms on both simulated SAR images and real-world SAR images captured by different sensors. The experimental results demonstrate that the presented method outperforms the state-of-the-art techniques by a considerable marginauthorsversionPeer reviewe

    Enhancing Landsat time series through multi-sensor fusion and integration of meteorological data

    Get PDF
    Over 50 years ago, the United States Interior Secretary, Stewart Udall, directed space agencies to gather "facts about the natural resources of the earth." Today global climate change and human modification make earth observations from all variety of sensors essential to understand and adapt to environmental change. The Landsat program has been an invaluable source for understanding the history of the land surface, with consistent observations from the Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) sensors since 1982. This dissertation develops and explores methods for enhancing the TM/ETM+ record by fusing other data sources, specifically, Landsat 8 for future continuity, radar data for tropical forest monitoring, and meteorological data for semi-arid vegetation dynamics. Landsat 8 data may be incorporated into existing time series of Landsat 4-7 data for applications like change detection, but vegetation trend analysis requires calibration, especially when using the near-infrared band. The improvements in radiometric quality and cloud masking provided by Landsat 8 data reduce noise compared to previous sensors. Tropical forests are notoriously difficult to monitor with Landsat alone because of clouds. This dissertation developed and compared two approaches for fusing Synthetic Aperture Radar (SAR) data from the Advanced Land Observation Satellite (ALOS-1) with Landsat in Peru, and found that radar data increased accuracy of deforestation. Simulations indicate that the benefit of using radar data increased with higher cloud cover. Time series analysis of vegetation indices from Landsat in semi-arid environments is complicated by the response of vegetation to high variability in timing and amount of precipitation. We found that quantifying dynamics in precipitation and drought index data improved land cover change detection performance compared to more traditional harmonic modeling for grasslands and shrublands in California. This dissertation enhances the value of Landsat data by combining it with other data sources, including other optical sensors, SAR data, and meteorological data. The methods developed here show the potential for data fusion and are especially important in light of recent and upcoming missions, like Sentinel-1, Sentinel-2, and NASA-ISRO Synthetic Aperture Radar (NISAR)

    Object-based flood analysis using a graph-based representation

    Get PDF
    The amount of freely available satellite data is growing rapidly as a result of Earth observation programmes, such as Copernicus, an initiative of the European Space Agency. Analysing these huge amounts of geospatial data and extracting useful information is an ongoing pursuit. This paper presents an alternative method for flood detection based on the description of spatio-temporal dynamics in satellite image time series (SITS). Since synthetic aperture radar (SAR) satellite data has the capability of capturing images day and night, irrespective of weather conditions, it is the preferred tool for flood mapping from space. An object-based approach can limit the necessary computer power and computation time, while a graph-based approach allows for a comprehensible interpretation of dynamics. This method proves to be a useful tool to gain insight in a flood event. Graph representation helps to identify and locate entities within the study site and describe their evolution throughout the time series

    Flood mapping from radar remote sensing using automated image classification techniques

    Get PDF

    Analysis of Min-Trees over Sentinel-1 Time Series for Flood Detection

    Get PDF
    International audienceMonitoring flood is an important task for disaster management. It requires to distinguish between changes related to water from the other changes. We address such an issue by relying on both spatial and intensity information. To do so, we exploit min-tree that emphasize intensity extrema in a multiscale, efficient framework. We thus suggest a two-step approach operating on satellite image time series. We first perform a temporal analysis to identify images containing possible floods. Then a spatial analysis is achieved to detect flood areas on the selected images. Both steps relies on the analysis of component attributes extracted from the min-tree representation. We conduct some experiments on a flooded scene observed through Sentinel-1 SAR imagery. The results show that flood areas can be efficiently and accurately characterized with spatial component attributes extracted from hierarchical representations from SAR time series
    • …
    corecore