3,819 research outputs found

    A Simple Assessment of Flood Risk from Insurance Perspective: Based on Historical Data in Japan

    Get PDF

    A review of the internet of floods : near real-time detection of a flood event and its impact

    Get PDF
    Worldwide, flood events frequently have a dramatic impact on urban societies. Time is key during a flood event in order to evacuate vulnerable people at risk, minimize the socio-economic, ecologic and cultural impact of the event and restore a society from this hazard as quickly as possible. Therefore, detecting a flood in near real-time and assessing the risks relating to these flood events on the fly is of great importance. Therefore, there is a need to search for the optimal way to collect data in order to detect floods in real time. Internet of Things (IoT) is the ideal method to bring together data of sensing equipment or identifying tools with networking and processing capabilities, allow them to communicate with one another and with other devices and services over the Internet to accomplish the detection of floods in near real-time. The main objective of this paper is to report on the current state of research on the IoT in the domain of flood detection. Current trends in IoT are identified, and academic literature is examined. The integration of IoT would greatly enhance disaster management and, therefore, will be of greater importance into the future

    Assessing spatial flood vulnerability at kalapara upazila in Bangladesh using an analytic hierarchy process

    Full text link
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. Floods are common natural disasters worldwide, frequently causing loss of lives and huge economic and environmental damages. A spatial vulnerability mapping approach incorporating multi-criteria at the local scale is essential for deriving detailed vulnerability information for supporting flood mitigation strategies. This study developed a spatial multi-criteria-integrated approach of flood vulnerability mapping by using geospatial techniques at the local scale. The developed approach was applied on Kalapara Upazila in Bangladesh. This study incorporated 16 relevant criteria under three vulnerability components: physical vulnerability, social vulnerability and coping capacity. Criteria were converted into spatial layers, weighted and standardised to support the analytic hierarchy process. Individual vulnerability component maps were created using a weighted overlay technique, and then final vulnerability maps were produced from them. The spatial extents and levels of vulnerability were successfully identified from the produced maps. Results showed that the areas located within the eastern and south-western portions of the study area are highly vulnerable to floods due to low elevation, closeness to the active channel and more social components than other parts. However, with the integrated coping capacity, western and south-western parts are highly vulnerable because the eastern part demonstrated particularly high coping capacity compared with other parts. The approach provided was validated by qualitative judgement acquired from the field. The findings suggested the capability of this approach to assess the spatial vulnerability of flood effects in flood-affected areas for developing effective mitigation plans and strategies

    Predicting Evacuation Decisions using Representations of Individuals' Pre-Disaster Web Search Behavior

    Full text link
    Predicting the evacuation decisions of individuals before the disaster strikes is crucial for planning first response strategies. In addition to the studies on post-disaster analysis of evacuation behavior, there are various works that attempt to predict the evacuation decisions beforehand. Most of these predictive methods, however, require real time location data for calibration, which are becoming much harder to obtain due to the rising privacy concerns. Meanwhile, web search queries of anonymous users have been collected by web companies. Although such data raise less privacy concerns, they have been under-utilized for various applications. In this study, we investigate whether web search data observed prior to the disaster can be used to predict the evacuation decisions. More specifically, we utilize a "session-based query encoder" that learns the representations of each user's web search behavior prior to evacuation. Our proposed approach is empirically tested using web search data collected from users affected by a major flood in Japan. Results are validated using location data collected from mobile phones of the same set of users as ground truth. We show that evacuation decisions can be accurately predicted (84%) using only the users' pre-disaster web search data as input. This study proposes an alternative method for evacuation prediction that does not require highly sensitive location data, which can assist local governments to prepare effective first response strategies.Comment: Accepted in ACM KDD 201

    An investigation into the role of crowdsourcing in generating information for flood risk management

    Get PDF
    Flooding is a major global hazard whose management relies on an accurate understanding of its risks. Crowdsourcing represents a major opportunity for supporting flood risk management as members of the public are highly capable of producing useful flood information. This thesis explores a wide range of issues related to flood crowdsourcing using an interdisciplinary approach. Through an examination of 31 different projects a flood crowdsourcing typology was developed. This identified five key types of flood crowdsourcing: i) Incident Reporting, ii) Media Engagement, iii) Collaborative Mapping, iv) Online Volunteering and v) Passive VGI. These represent a wide range of initiatives with radically different aims, objectives, datasets and relationships with volunteers. Online Volunteering was explored in greater detail using Tomnod as a case study. This is a micro-tasking platform in which volunteers analyse satellite imagery to support disaster response. Volunteer motivations for participating on Tomnod were found to be largely altruistic. Demographics of participants were significant, with retirement, disability or long-term health problems identified as major drivers for participation. Many participants emphasised that effective communication between volunteers and the site owner is strongly linked to their appreciation of the platform. In addition, the feedback on the quality and impact of their contributions was found to be crucial in maintaining interest. Through an examination of their contributions, volunteers were found to be able to ascertain with a higher degree of accuracy, many features in satellite imagery which supervised image classification struggled to identify. This was more pronounced in poorer quality imagery where image classification had a very low accuracy. However, supervised classification was found to be far more systematic and succeeded in identifying impacts in many regions which were missed by volunteers. The efficacy of using crowdsourcing for flood risk management was explored further through the iterative development of a Collaborative Mapping web-platform called Floodcrowd. Through interviews and focus groups, stakeholders from the public and private sector expressed an interest in crowdsourcing as a tool for supporting flood risk management. Types of data which stakeholders are particularly interested in with regards to crowdsourcing differ between organisations. Yet, they typically include flood depths, photos, timeframes of events and historical background information. Through engagement activities, many citizens were found to be able and motivated to share such observations. Yet, motivations were strongly affected by the level of attention their contributions receive from authorities. This presents many opportunities as well as challenges for ensuring that the future of flood crowdsourcing improves flood risk management and does not damage stakeholder relationships with participants

    An empirical flood fatality model for Italy using random forest algorithm

    Get PDF
    Due to an increasing occurrence of natural hazards, such as floods, a significant number of lives are lost each year worldwide. The risk of experiencing catastrophic losses from flooding is exacerbated due to the changing climate, and the increasing anthropogenic activities. Consequently, predicting the conditions leading to fatalities is crucial in the assessment of flood risk. However, the existing modeling capabilities in this field, are limited, emphasizing the critical need for the development of such tools. Here, we show that the occurrence of flood fatalities can be estimated using a random forest (RF) algorithm applied to nine explanatory variables characterizing each fatality. Furthermore, by converting the RF model outcomes into a user-friendly tool, it is possible to predict the probability of the occurrence of flood-related fatalities, based on variables describing hazard intensity and the environmental and sociodemographic conditions that contribute to such events. Our results represent an initial attempt towards a predictive model of flood fatalities in the Italian context. They reveal the key factors that together influence flood fatalities, enabling the prediction of such occurrences. These findings can serve as a foundational framework for quantitatively assessing the risk to the population from such events and as a valuable resource for identifying strategies to mitigate flood risk

    The Acceptance of Using Information Technology for Disaster Risk Management: A Systematic Review

    Get PDF
    The numbers of natural disaster events are continuously affecting human and the world economics. For coping with disaster, several sectors try to develop the frameworks, systems, technologies and so on. However, there are little researches focusing on the usage behavior of Information Technology (IT) for disaster risk management (DRM). Therefore, this study investigates the affecting factors on the intention to use IT for mitigating disaster’s impacts. This study conducted a systematic review with the academic researches during 2011-2018. Two important factors from the Technology Acceptance Model (TAM) and others are used in describing individual behavior. In order to investigate the potential factors, the technology platforms are divided into nine types. According to the findings, computer software such as GIS applications are frequently used for simulation and spatial data analysis. Social media is preferred among the first choices during disaster events in order to communicate about situations and damages. Finally, we found five major potential factors which are Perceived Usefulness (PU), Perceived Ease of Use (PEOU), information accessibility, social influence, and disaster knowledge. Among them, the most essential one of using IT for disaster management is PU, while PEOU and information accessibility are more important in the web platforms

    Impact Forecasting to Support Emergency Management of Natural Hazards

    Get PDF
    Forecasting and early warning systems are important investments to protect lives, properties, and livelihood. While early warning systems are frequently used to predict the magnitude, location, and timing of potentially damaging events, these systems rarely provide impact estimates, such as the expected amount and distribution of physical damage, human consequences, disruption of services, or financial loss. Complementing early warning systems with impact forecasts has a twofold advantage: It would provide decision makers with richer information to take informed decisions about emergency measures and focus the attention of different disciplines on a common target. This would allow capitalizing on synergies between different disciplines and boosting the development of multihazard early warning systems. This review discusses the state of the art in impact forecasting for a wide range of natural hazards. We outline the added value of impact-based warnings compared to hazard forecasting for the emergency phase, indicate challenges and pitfalls, and synthesize the review results across hazard types most relevant for Europe

    Assessing the social impacts of extreme weather events using social media

    Get PDF
    The frequency and severity of extreme weather events such as flooding, hurricanes/storms and heatwaves are increasing as a result of climate change. There is a need for information to better understand when, where and how these events are impacting people. However, there are currently limited sources of impact information beyond traditional meteorological observations. Social sensing, which is the use of unsolicited social media data to better understand real world events, is one method that may provide such information. Social sensing has successfully been used to detect earthquakes, floods, hurricanes, wildfires, heatwaves and other weather hazards. Here social sensing methods are adapted to explore potential for collecting impact information for meteorologists and decision makers concerned with extreme weather events. After a review of the literature, three experimental studies are presented. Social sensing is shown to be effective for detection of impacts of named storms in the UK and Ireland. Topics of discussion and sentiment are explored in the period before, during and after a storm event. Social sensing is also shown able to detect high-impact rainfall events worldwide, validating results against a manually curated database. Additional events which were not known to this database were found by social sensing. Finally, social sensing was applied to heatwaves in three European cities. Building on previous work on heatwaves in the UK, USA and Australia, the methods were extended to include impact phrases alongside hazard-related phrases, in three different languages (English, Dutch and Greek). Overall, social sensing is found to be a good source of impact information for organisations that need to better understand the impacts of extreme weather. The research described in this project has been commercialised for operational use by meteorological agencies in the UK, including the Met Office, Environment Agency and Natural Resources Wales.Engineering and Physical Sciences Research Council (EPSRC
    • …
    corecore