167 research outputs found

    Decentralized Multi-Subgroup Formation Control With Connectivity Preservation and Collision Avoidance

    Get PDF
    This paper proposes a formation control algorithm to create separated multiple formations for an undirected networked multi-agent system while preserving the network connectivity and avoiding collision among agents. Through the modified multi-consensus technique, the proposed algorithm can simultaneously divide a group of multiple agents into any arbitrary number of desired formations in a decentralized manner. Furthermore, the agents assigned to each formation group can be easily reallocated to other formation groups without network topological constraints as long as the entire network is initially connected; an operator can freely partition agents even if there is no spanning tree within each subgroup. Besides, the system can avoid collision without loosing the connectivity even during the transient period of formation by applying the existing potential function based on the network connectivity estimation. If the estimation is correct, the potential function not only guarantees the connectivity maintenance but also allows some extra edges to be broken if the network remains connected. Numerical simulations are performed to verify the feasibility and performance of the proposed multi-subgroup formation control

    Hybrid Flocking Control Algorithm with Application to Coordination between Multiple Fixed-wing Aircraft

    Get PDF
    Flocking, as a collective behavior of a group, has been investigated in many areas, and in the recent decade, flocking algorithm design has gained a lot of attention due to its variety of potential applications. Although there are many applications exclusively related to fixed-wing aircraft, most of the theoretical works rarely consider these situations. The fixed-wing aircraft flocking is distinct from the general flocking problems by four practical concerns, which include the nonholonomic constraint, the limitation of speed, the collision avoidance and the efficient use of airspace. None of the existing works have addressed all these concerns. The major difficulty is to take into account the all four concerns simultaneously meanwhile having a relatively mild requirement on the initial states of aircraft. In this thesis, to solve the fixed-wing aircraft flocking problem, a supervisory decentralized control algorithm is proposed. The proposed control algorithm has a switching control structure, which basically includes three modes of control protocol and a state-dependent switching logic. Three modes of decentralized control protocol are designed based on the artificial potential field method, which helps to address the nonholonomic constraint, the limitation of speed and the collision avoidance for appropriate initial conditions. The switching logic is designed based on the invariance property induced by the control modes such that the desirable convergence properties of the flocking behavior and the efficient use of airspace are addressed. The proposed switching logic can avoid the fast mode switching, and the supervisor does not require to perform switchings frequently and respond to the aircraft immediately, which means the desired properties can still be guaranteed with the presence of the dwell time in the supervisor

    Multi-agent Motion Planning for Dense and Dynamic Environments via Deep Reinforcement Learning

    Full text link
    This paper introduces a hybrid algorithm of deep reinforcement learning (RL) and Force-based motion planning (FMP) to solve distributed motion planning problem in dense and dynamic environments. Individually, RL and FMP algorithms each have their own limitations. FMP is not able to produce time-optimal paths and existing RL solutions are not able to produce collision-free paths in dense environments. Therefore, we first tried improving the performance of recent RL approaches by introducing a new reward function that not only eliminates the requirement of a pre supervised learning (SL) step but also decreases the chance of collision in crowded environments. That improved things, but there were still a lot of failure cases. So, we developed a hybrid approach to leverage the simpler FMP approach in stuck, simple and high-risk cases, and continue using RL for normal cases in which FMP can't produce optimal path. Also, we extend GA3C-CADRL algorithm to 3D environment. Simulation results show that the proposed algorithm outperforms both deep RL and FMP algorithms and produces up to 50% more successful scenarios than deep RL and up to 75% less extra time to reach goal than FMP.Comment: IEEE Robotics and Automation Letters (2020

    Distributed formation control with time and connectivity constraints

    Get PDF
    [Abstract] In this paper, we propose a distributed control law for non-holonomic vehicles that guarantees to achieve the desired formation and location before a given deadline, while maintaining the connectivity of the group. The group is commanded by a a selected subset of the agents, which know the location of the desired objective, while the rest of the vehicles only have information about their relative desired positions respect their set of neighbors. The analytical results are illustrated with a simulation example.[Resumen] En este documento, proponemos una ley de control distribuido para vehículos no holonómicos que garantiza alcanzar la formación y ubicación deseadas antes de un plazo determinado, mientras se mantiene la conectividad del grupo. El grupo está comandado por un subconjunto seleccionado de agentes, que conocen la ubicación del objetivo deseado, mientras que el resto de los vehículos solo tienen información sobre sus posiciones relativas deseadas con respecto a su conjunto de vecinos. Los resultados analíticos se ilustran con un ejemplo de simulación

    Coordination of Multirobot Teams and Groups in Constrained Environments: Models, Abstractions, and Control Policies

    Get PDF
    Robots can augment and even replace humans in dangerous environments, such as search and rescue and reconnaissance missions, yet robots used in these situations are largely tele-operated. In most cases, the robots\u27 performance depends on the operator\u27s ability to control and coordinate the robots, resulting in increased response time and poor situational awareness, and hindering multirobot cooperation. Many factors impede extended autonomy in these situations, including the unique nature of individual tasks, the number of robots needed, the complexity of coordinating heterogeneous robot teams, and the need to operate safely. These factors can be partly addressed by having many inexpensive robots and by control policies that provide guarantees on convergence and safety. In this thesis, we address the problem of synthesizing control policies for navigating teams of robots in constrained environments while providing guarantees on convergence and safety. The approach is as follows. We first model the configuration space of the group (a space in which the robots cannot violate the constraints) as a set of polytopes. For a group with a common goal configuration, we reduce complexity by constructing a configuration space for an abstracted group state. We then construct a discrete representation of the configuration space, on which we search for a path to the goal. Based on this path, we synthesize feedback controllers, decentralized affine controllers for kinematic systems and nonlinear feedback controllers for dynamical systems, on the polytopes, sequentially composing controllers to drive the system to the goal. We demonstrate the use of this method in urban environments and on groups of dynamical systems such as quadrotors. We reduce the complexity of multirobot coordination by using an informed graph search to simultaneously build the configuration space and find a path in its discrete representation to the goal. Furthermore, by using an abstraction on groups of robots we dissociate complexity from the number of robots in the group. Although the controllers are designed for navigation in known environments, they are indeed more versatile, as we demonstrate in a concluding simulation of six robots in a partially unknown environment with evolving communication links, object manipulation, and stigmergic interactions
    corecore