8 research outputs found

    Swarm robotics: Remarks on terminology and classification

    Get PDF
    © Springer Nature Switzerland AG 2018. Swarm robotics is a fast-growing field of research in recent years. As studies count increases, the terminology requires a revision in order to provide a proper level of unification and precision - even a unique “swarm robotics” term needs to be established. Since there are multiple types of collective robotics approaches and corresponding methodology, swarm robotics field terminology must be explicitly distinguished from others. In this paper, we attempt to compare and refine definitions that had been proposed in previous researches. We demonstrate relations between swarm robotics and concepts of adjacent fields including multi-agent systems, multi-robot systems and sensor networks

    A review on multi-robot systems categorised by application domain

    Get PDF
    Literature reviews on Multi-Robot Systems (MRS) typically focus on fundamental technical aspects, like coordination and communication, that need to be considered in order to coordinate a team of robots to perform a given task effectively and efficiently. Other reviews only consider works that aim to address a specific problem or one particular application of MRS. In contrast, this paper presents a survey of recent research works on MRS and categorises them according to their application domain. Furthermore, this paper compiles a number of seminal review works that have proposed specific taxonomies in classifying fundamental concepts, such as coordination, architecture and communication, in the field of MRS.peer-reviewe

    Cooperative Robots to Observe Moving Targets: Review

    Get PDF

    Swarm Robotics

    Get PDF
    Collectively working robot teams can solve a problem more efficiently than a single robot, while also providing robustness and flexibility to the group. Swarm robotics model is a key component of a cooperative algorithm that controls the behaviors and interactions of all individuals. The robots in the swarm should have some basic functions, such as sensing, communicating, and monitoring, and satisfy the following properties

    Route Planning and Operator Allocation in Robot Fleets

    Get PDF
    In this thesis, we address various challenges related to optimal planning and task allocation in a robot fleet supervised by remote human operators. The overarching goal is to enhance the performance and efficiency of the robot fleets by planning routes and scheduling operator assistance while accounting for limited human availability. The thesis consists of three main problems, each of which focuses on a specific aspect of the system. The first problem pertains to optimal planning for a robot in a collaborative human-robot team, where the human supervisor is intermittently available to assist the robot to complete its tasks faster. Specifically, we address the challenge of computing the fastest route between two configurations in an environment with time constraints on how long the robot can wait for assistance at intermediate configurations. We consider the application of robot navigation in a city environment, where different routes can have distinct speed limits and different time constraints on how long a robot is allowed to wait. Our proposed approach utilizes the concepts of budget and critical departure times, enabling optimal solution and enhanced scalability compared to existing methods. Extensive comparisons with baseline algorithms on a city road network demonstrate its effectiveness and ability to achieve high-quality solutions. Furthermore, we extend the problem to the multi-robot case, where the challenge lies in prioritizing robots when multiple service requests arrive simultaneously. To address this challenge, we present a greedy algorithm that efficiently prioritizes service requests in a batch and has a remarkably good performance compared to the optimal solution. The next problem focuses on allocating human operators to robots in a fleet, considering each robot's specified route and the potential for failures and getting stuck. Conventional techniques used to solve such problems face scalability issues due to exponential growth of state and action spaces with the number of robots and operators. To overcome these, we derive conditions for a technical requirement called indexability, thereby enabling the use of the Whittle index heuristic. Our key insight is to leverage the structure of the value function of individual robots, resulting in conditions that can be easily verified separately for each state of each robot. We apply these conditions to two types of transitions commonly seen in supervised robot fleets. Through numerical simulations, we demonstrate the efficacy of Whittle index policy as a near-optimal scalable approach that outperforms existing scalable methods. Finally, we investigate the impact of interruptions on human supervisors overseeing a fleet of robots. Human supervisors in such systems are primarily responsible for monitoring robots, but can also be assigned with secondary tasks. These tasks can act as interruptions and can be categorized as either intrinsic, i.e., being directly related to the monitoring task, or extrinsic, i.e., being unrelated. Through a user study involving 3939 participants, the findings reveal that task performance remains relatively unaffected by interruptions, and is primarily dependent on the number of robots being monitored. However, extrinsic interruptions led to a significant increase in perceived workload, creating challenges in switching between tasks. These results highlight the importance of managing user workload by limiting extrinsic interruptions in such supervision systems. Overall, this thesis contributes to the field of robot planning and operator allocation in collaborative human-robot teams. By incorporating human assistance, addressing scalability challenges, and understanding the impact of interruptions, we aim to enhance the performance and usability of robot fleets. Our work introduces optimal planning methods and efficient allocation strategies, empowering the seamless operation of robot fleets in real-world scenarios. Additionally, we provide valuable insights into user workload, shedding light on the interactions between humans and robots in such systems. We hope that our research promotes the widespread adoption of robot fleets and facilitates their integration into various domains, ultimately driving advancements in the field

    Task Allocation Strategies in Multi-Robot Environment

    Get PDF
    Multirobot systems (MRS) hold the promise of improved performance and increased fault tolerance for large-scale problems. A robot team can accomplish a given task more quickly than a single agent by executing them concurrently. A team can also make effective use of specialists designed for a single purpose rather than requiring that a single robot be a generalist. Multirobot coordination, however, is a complex problem. An empirical study is described in the thesis that sought general guidelines for task allocation strategies. Different strategies are identified, and demonstrated in the multi-robot environment.Robot selection is one of the critical issues in the design of robotic workcells. Robot selection for an application is generally done based on experience, intuition and at most using the kinematic considerations like workspace, manipulability, etc. This problem has become more difficult in recent years due to increasing complexity, available features, and facilities offered by different robotic products. A systematic procedure is developed for selection of robot manipulators based on their different pertinent attributes. The robot selection procedure allows rapid convergence from a very large number of candidate robots to a manageable shortlist of potentially suitable robots. Subsequently, the selection procedure proceeds to rank the alternatives in the shortlist by employing different attributes based specification methods. This is an attempt to create exhaustive procedure by identifying maximum possible number of attributes for robot manipulators.Availability of large number of robot configurations has made the robot workcell designers think over the issue of selecting the most suitable one for a given set of operations. The process of selection of the appropriate kind of robot must consider the various attributes of the robot manipulator in conjunction with the requirement of the various operations for accomplishing the task. The present work is an attempt to develop a systematic procedure for selection of robot based on an integrated model encompassing the manipulator attributes and manipulator requirements

    Flocking for Multirobots Without Distinguishing Robots and Obstacles

    Get PDF
    Most existing studies of multiple mobile robots assume that robots can distinguish between other robots and obstacles. However, if a flocking algorithm was available that did not require this ability, easier implementation could be expected. In this brief, we propose a flocking algorithm that does not distinguish between a robot and an obstacle. In other words, all detected objects are regarded as obstacles in the proposed algorithm. Thus, velocity information on neighboring robots is not required. We also show that the proposed algorithm maintains the desired properties of existing flocking algorithms, even though only limited information is used in the proposed algorithm. Furthermore, unlike many previous studies, the effectiveness of the algorithm is demonstrated not only by simulations, but also in real robot experiments. In the experiments, neighboring robots and obstacles are detected using only laser range finders, since the robots do not need to distinguish between another robot and an obstacle

    Flocking for Multirobots Without Distinguishing Robots and Obstacles

    No full text
    corecore