4,658 research outputs found

    New formats for computing with real-numbers under round-to-nearest

    Get PDF
    An edited version of this work was accepted in IEEE Transactions on computers, DOI 10.1109/TC.2015.2479623In this paper, a new family of formats to deal with real number for applications requiring round to nearest is proposed. They are based on shifting the set of exactly represented numbers which are used in conventional radix-R number systems. This technique allows performing radix complement and round to nearest without carry propagation with negligible time and hardware cost. Furthermore, the proposed formats have the same storage cost and precision as standard ones. Since conversion to conventional formats simply require appending one extra-digit to the operands, standard circuits may be used to perform arithmetic operations with operands under the new format. We also extend the features of the RN-representation system and carry out a thorough comparison between both representation systems. We conclude that the proposed representation system is generally more adequate to implement systems for computation with real number under round-to-nearest.Ministry of Education and Science of Spain under contracts TIN2013-42253-P

    Measuring Improvement when Using HUB Formats to Implement Floating-Point Systems under Round-to-Nearest

    Get PDF
    MEC bajo TIN2013-42253-PThis paper analyzes the benefits of using HUB formats to implement floating-point arithmetic under round-tonearest mode from a quantitative point of view. Using HUB formats to represent numbers allows the removal of the rounding logic of arithmetic units, including sticky-bit computation. This is shown for floating-point adders, multipliers, and converters. Experimental analysis demonstrates that HUB formats and the corresponding arithmetic units maintain the same accuracy as conventional ones. On the other hand, the implementation of these units, based on basic architectures, shows that HUB formats simultaneously improve area, speed, and power consumption. Specifically, based on data obtained from the synthesis, a HUB single-precision adder is about 14% faster but consumes 38% less area and 26% less power than the conventional adder. Similarly, a HUB single-precision multiplier is 17% faster, uses 22% less area, and consumes slightly less power than conventional multiplier. At the same speed, the adder and multiplier achieve area and power reductions of up to 50% and 40%, respectively

    Stochastic rounding and reduced-precision fixed-point arithmetic for solving neural ordinary differential equations

    Get PDF
    Although double-precision floating-point arithmetic currently dominates high-performance computing, there is increasing interest in smaller and simpler arithmetic types. The main reasons are potential improvements in energy efficiency and memory footprint and bandwidth. However, simply switching to lower-precision types typically results in increased numerical errors. We investigate approaches to improving the accuracy of reduced-precision fixed-point arithmetic types, using examples in an important domain for numerical computation in neuroscience: the solution of Ordinary Differential Equations (ODEs). The Izhikevich neuron model is used to demonstrate that rounding has an important role in producing accurate spike timings from explicit ODE solution algorithms. In particular, fixed-point arithmetic with stochastic rounding consistently results in smaller errors compared to single precision floating-point and fixed-point arithmetic with round-to-nearest across a range of neuron behaviours and ODE solvers. A computationally much cheaper alternative is also investigated, inspired by the concept of dither that is a widely understood mechanism for providing resolution below the least significant bit (LSB) in digital signal processing. These results will have implications for the solution of ODEs in other subject areas, and should also be directly relevant to the huge range of practical problems that are represented by Partial Differential Equations (PDEs).Comment: Submitted to Philosophical Transactions of the Royal Society

    Floating Point Square Root under HUB Format

    Get PDF
    Unit-Biased (HUB) is an emerging format based on shifting the representation line of the binary numbers by half unit in the last place. The HUB format is specially relevant for computers where rounding to nearest is required because it is performed simply by truncation. From a hardware point of view, the circuits implementing this representation save both area and time since rounding does not involve any carry propagation. Designs to perform the four basic operations have been proposed under HUB format recently. Nevertheless, the square root operation has not been confronted yet. In this paper we present an architecture to carry out the square root operation under HUB format for floating point numbers. The results of this work keep supporting the fact that the HUB representation involves simpler hardware than its conventional counterpart for computers requiring round-to-nearest mode.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec
    • …
    corecore