58,681 research outputs found

    Examining the potential of floating car data for dynamic traffic management

    Get PDF
    Traditional traffic monitoring systems are mostly based on road side equipment (RSE) measuring traffic conditions throughout the day. With more and more GPS-enabled connected devices, floating car data (FCD) has become an interesting source of traffic information, requiring only a fraction of the RSE infrastructure investment. While FCD is commonly used to derive historic travel times on individual roads and to evaluate other traffic data and algorithms, it could also be used in traffic management systems directly. However, as live systems only capture a small percentage of all traffic, its use in live operating systems needs to be examined. Here, the authors investigate the potential of FCD to be used as input data for live automated traffic management systems. The FCD in this study is collected by a live country-wide FCD system in the Netherlands covering 6-8% of all vehicles. The (anonymised) data is first compared to available road side measurements to show the current quality of FCD. It is then used in a dynamic speed management system and compared to the installed system on the studied highway. Results indicate the FCD set-up can approximate the installed system, showing the feasibility of a live system

    New ITS applications for metropolitan areas based on Floating Car Data

    Get PDF
    The paper describes a couple of FCD based vehicular traffic applications and services. This new method is especially beneficial for regions with a poor traffic monitoring infrastructure because the necessary monetary effort to establish such a system is very small in comparison to conventional systems and it is flexible and easily adaptable to other regions. Particularly, emerging markets like China with a fast-changing road network and a high penetration of lat-est information technologies on one side but with serious foreseeable traffic related problems on the other side can surely profit from this approach. The new data collection and analysing methods result in better performance of the services enhance the scope of the services and hopefully enlarge user acceptance. All of the proposed solutions are prototypes and not all of them have been extensively tested up to now. Certainly, specific data processing methods need further research, some refinements and calibrations. Additionally, some applications still suffer from insufficient data penetration. Nevertheless, the approach is very general and it is very likely that FCD availability will sharply increase in near future and will enhance the quality of services

    Feasibility of expanding traffic monitoring systems with floating car data technology

    Get PDF
    Trajectory information reported by certain vehicles (Floating Car Data or FCD) can be applied to monitor the road network. Policy makers face difficulties when deciding to invest in the expansion of their infrastructure based on inductive loops and cameras, or to invest in a FCD system. This paper targets this decision. The provided FCD functionality is investigated, minimum requirements are determined and reliability issues are researched. The communication cost is derived and combined with other elements to assess the total costs for different scenarios. The outcome is to target a penetration rate of 1%, a sample interval of 10 seconds and a transmission interval of 30 seconds. Such a deployment can accurately determine the locations of incidents and traffic jams. It can also estimate travel times accurately for highways, for urban roads this is limited to a binary categorization into normal or congested traffic. No reliability issues are expected. The most cost efficient scenario when deploying a new FCD system is to launch a smartphone application. For Belgium, this costs 13 million EUR for 10 years. However, it is estimated that purchasing data from companies already acquiring FCD data through their own product could reduce costs with a factor 10

    A review of traffic signal control methods and experiments based on Floating Car Data (FCD)

    Get PDF
    Abstract This paper intends to give a short review of the state of the art on the use of floating car data concerning the management of traffic flow at signalized intersections. New technologies such as connected and autonomous vehicles and Co-operative Intelligent Transportation Systems (C-ITS) are going to change the future of traffic control and management. Traffic signal control systems can be reorganized by using Floating Car Data (FCD), yet the concept of floating car data (FCD) has been mainly studied to gain traffic information and/or signal information. Only recent works have been focalizing on the potential application of FCD for traffic signal real-time control. This paper aims to evidence the most important concepts that can be extracted from the literature on this important topic

    Floating Car Data Technology

    Get PDF
    The limiting conditions of traffic in cities, together with the complex and dynamic traffic flows, require an efficient and systematic management and information provision for the traffic participants, with the goal to achieve better utilisation of traffic resources and preserve sustainable mobility. In that context, it is important to identify the traffic flow location features, which requires data and information. This paper presents the application of mobile vehicles for the collection of real time traffic flow data. Such data have become an important source of traffic data, since they can be collected in a simple and cost-efficient way, enabling higher coverage than the conventional approaches, despite the reliability issues. The term referring to that type of data collection, commonly used in scientific and professional literature is FCD (Floating Car Data) and “Probe vehicle”. The efficiency presentation of applying this extensive data source for retrieving necessary parameters and information related to the achievement of sustainable mobility is the final objective of this paper. A description of modern technologies that serve as a basis for probe vehicle data collection has been provided: a geographical information system (GIS), global navigation satellite system (GNSS) and related wireless communication. Within the key technologies review, the development possibilities of data collection by mobile sensors have also been presented
    • …
    corecore