2,428 research outputs found

    Influences on aircraft target off-block time prediction accuracy

    Get PDF
    With Airport Collaborative Decision Making (A-CDM) as a generic concept of working together of all airport partners, the main aim of this research project was to increase the understanding of the Influences on the Target Off-Block Time (TOBT) Prediction Accuracy during A-CDM. Predicting the TOBT accurately is important, because all airport partners use it as a reference time for the departure of the flights after the aircraft turn-round. Understanding such influencing factors is therefore not only required for finding measures to counteract inaccurate TOBT predictions, but also for establishing a more efficient A-CDM turn-round process. The research method chosen comprises a number of steps. Firstly, within the framework of a Cognitive Work Analysis, the sub-processes as well as the information requirements during turn-round were analysed. Secondly, a survey approach aimed at finding and describing situations during turn-round that are critical for TOBT adherence was pursued. The problems identified here were then investigated in field observations at different airlines’ operation control rooms. Based on the findings from these previous steps, small-scale human-in-the-loop experiments were designed aimed at testing hypotheses about data/information availability that influence TOBT predictability. A turn-round monitoring tool was developed for the experiments. As a result of this project, the critical chain of turn-round events and the decisions necessary during all stages of the turn-round were identified. It was concluded that information required but not shared among participants can result in TOBT inaccuracy swings. In addition, TOBT predictability was shown to depend on the location of the TOBT turn-round controller who assigns the TOBT: More reliable TOBT predictions were observed when the turn-round controller was physically present at the aircraft. During the experiments, TOBT prediction could be improved by eight minutes, if available information was cooperatively shared ten minutes prior turn-round start between air crews and turn-round controller; TOBT prediction could be improved by 15 minutes, if additional information was provided by ramp agents five minutes after turnround start

    Airspace Technology Demonstration 2 (ATD-2) Technology Description Document (TDD)

    Get PDF
    This Technology Description Document (TDD) provides an overview of the technology for the Phase 1 Baseline Integrated Arrival, Departure, and Surface (IADS) prototype system of the National Aeronautics and Space Administration's (NASA) Airspace Technology Demonstration 2 (ATD-2) project, to be demonstrated beginning in 2017 at Charlotte Douglas International Airport (CLT). Development, integration, and field demonstration of relevant technologies of the IADS system directly address recommendations made by the Next Generation Air Transportation System (NextGen) Integration Working Group (NIWG) on Surface and Data Sharing and the Surface Collaborative Decision Making (Surface CDM) concept of operations developed jointly by the Federal Aviation Administration (FAA) and aviation industry partners. NASA is developing the IADS traffic management system under the ATD-2 project in coordination with the FAA, flight operators, CLT airport, and the National Air Traffic Controllers Association (NATCA). The primary goal of ATD-2 is to improve the predictability and operational efficiency of the air traffic system in metroplex environments, through the enhancement, development, and integration of the nation's most advanced and sophisticated arrival, departure, and surface prediction, scheduling, and management systems. The ATD-2 project is a 5-year research activity beginning in 2015 and extending through 2020. The Phase 1 Baseline IADS capability resulting from the ATD-2 research will be demonstrated at the CLT airport beginning in 2017. Phase 1 will provide the initial demonstration of the integrated system with strategic and tactical scheduling, tactical departure scheduling to an en route meter point, and an early implementation prototype of a Terminal Flight Data Manager (TFDM) Electronic Flight Data (EFD) system. The strategic surface scheduling element of the capability is consistent with the Surface CDM Concept of Operations published in 2014 by the FAA Surface Operations Directorate

    Airport surface operations requirements analysis

    Get PDF
    This report documents the results of the Airport Surface Operations Requirements Analysis (ASORA) study. This study was conducted in response to task 24 of NASA Contract NAS1-18027. This study is part of NASA LaRC's Low Visibility Surface Operations program, which is designed to eliminate the constraints on all-weather arrival/departure operations due to the airport/aircraft ground system. The goal of this program is to provide the capability for safe and efficient aircraft operations on the airport surface during low visibility conditions down to zero. The ASORA study objectives were to (1) develop requirements for operation on the airport surface in visibilities down to zero; (2) survey and evaluate likely technologies; (3) develop candidate concepts to meet the requirements; and (4) select the most suitable concept based on cost/benefit factors

    Flight Demonstration of Integrated Airport Surface Technologies for Increased Capacity and Safety

    Get PDF
    A flight demonstration was conducted to address airport surface movement area capacity and safety issues by providing pilots with enhanced situational awareness information. The demonstration presented an integration of several technologies to government and industry representatives. These technologies consisted of an electronic moving map display in the cockpit, a Differential Global Positioning system (DGPS) receiver, a high speed very high frequency (VHF) data link, an Airport Surface Detection Equipment (ASDE-3) radar, and the Airport Movement Area Safety System (AMASS). Aircraft identification was presented to an air traffic controller on an AMASS display. The onboard electronic map included the display of taxi routes, hold instructions, and clearances, which were sent to the aircraft via data link by the controller. The map also displayed the positions of other traffic and warning information, which were sent to the aircraft automatically from the ASDE-3/AMASS system. This paper describes the flight demonstration in detail, along with test results

    Trajectory-Based Takeoff Time Predictions Applied to Tactical Departure Scheduling: Concept Description, System Design, and Initial Observations

    Get PDF
    Current aircraft departure release times are based on manual estimates of aircraft takeoff times. Uncertainty in takeoff time estimates may result in missed opportunities to merge into constrained en route streams and lead to lost throughput. However, technology exists to improve takeoff time estimates by using the aircraft surface trajectory predictions that enable air traffic control tower (ATCT) decision support tools. NASA s Precision Departure Release Capability (PDRC) is designed to use automated surface trajectory-based takeoff time estimates to improve en route tactical departure scheduling. This is accomplished by integrating an ATCT decision support tool with an en route tactical departure scheduling decision support tool. The PDRC concept and prototype software have been developed, and an initial test was completed at air traffic control facilities in Dallas/Fort Worth. This paper describes the PDRC operational concept, system design, and initial observations

    Definition of the 2005 flight deck environment

    Get PDF
    A detailed description of the functional requirements necessary to complete any normal commercial flight or to handle any plausible abnormal situation is provided. This analysis is enhanced with an examination of possible future developments and constraints in the areas of air traffic organization and flight deck technologies (including new devices and procedures) which may influence the design of 2005 flight decks. This study includes a discussion on the importance of a systematic approach to identifying and solving flight deck information management issues, and a description of how the present work can be utilized as part of this approach. While the intent of this study was to investigate issues surrounding information management in 2005-era supersonic commercial transports, this document may be applicable to any research endeavor related to future flight deck system design in either supersonic or subsonic airplane development

    Airspace Technology Demonstration 2 (ATD-2) Phase 1 Concept of Use (ConUse)

    Get PDF
    This document presents an operational Concept of Use (ConUse) for the Phase 1 Baseline Integrated Arrival, Departure, and Surface (IADS) prototype system of NASA's Airspace Technology Demonstration 2 (ATD-2) sub-project, which began demonstration in 2017 at Charlotte Douglas International Airport (CLT). NASA is developing the IADS system under the ATD-2 sub-project in coordination with the Federal Aviation Administration (FAA) and aviation industry partners. The primary goal of ATD-2 sub-project is to improve the predictability and the operational efficiency of the air traffic system in metroplex environments, through the enhancement, development, and integration of the nation's most advanced and sophisticated arrival, departure, and surface prediction, scheduling, and management systems. The ATD-2 effort is a five-year research activity through 2020. The initial phase of the ATD-2 sub-project, which is the focus of this document, will demonstrate the Phase 1 Baseline IADS capability at CLT in 2017. The Phase 1 Baseline IADS capabilities of the ATD-2 sub-project consists of: (a) Strategic and tactical surface scheduling to improve efficiency and predictability of airport surface operations, (b) Tactical departure scheduling to enhance merging of departures into overhead traffic streams via accurate predictions of takeoff times and automated coordination between the Airport Traffic Control Tower (ATCT, or Tower) and the Air Route Traffic Control Center (ARTCC, or Center), (c) Improvements in departure surface demand predictions in Time Based Flow Management (TBFM), (d) A prototype Electronic Flight Data (EFD) system provided by the FAA via the Terminal Flight Data Manager (TFDM) early implementation effort, and (e) Improved situational awareness and demand predictions through integration with the Traffic Flow Management System (TFMS), TBFM, and TFDM (3Ts) for electronic data integration and exchange, and an on-screen dashboard displaying pertinent analytics in real-time. The surface scheduling and metering element of the capability is consistent with the Surface CDM Concept of Operations published in 2014 by the FAA Surface Operations Directorate.1 Upon successful demonstration of the Phase 1 Baseline IADS capability, follow-on demonstrations of the matured IADS traffic management capabilities will be conducted in the 2018-2020 timeframe. At the end of each phase of the demonstrations, NASA will transfer the ATD-2 sub-project technology to the FAA and industry partners

    Runway conflict alerting during take-off and landing: advisory or directive?

    Get PDF
    Runway incursions pose a significant threat to continued safety in commercial aviation. In recent years, stakeholders have initiated a number of programmes dealing with the issue of runway incursions, with the majority adopting traditional advisory alerting techniques. In contrast, this work proposes the use of directive cockpit alerting, which provides both an alert of the conflict as well as guidance on which manoeuvre to conduct to clear the conflict. This paper reports the findings of simulator trails designed for the assessment of the effectiveness and acceptability of the directive alerting strategy within the context of runway incursions. Statistical analysis performed on the quantitative measures taken from the evaluations have shown that the directive mode of alerting leads to a higher probability of the crew performing the correct action when faced with an alert. This, together with overall participant acceptance of the directive alerting concept, is a strong indicator that the technique has the potential of providing a complete solution to the problem of runway incursions.peer-reviewe

    Evaluation of Head-Worn Display Concepts for Commercial Aircraft Taxi Operations

    Get PDF
    Previous research has demonstrated that a Head-Up Display (HUD) can be used to enable more capacity and safer aircraft surface operations. This previous research also noted that the HUD exhibited two major limitations which hindered the full potential of the display concept: 1) the monochrome HUD format; and, 2) a limited, fixed field of regard. Full-color Head Worn Displays (HWDs) with very small sizes and weights are emerging to the extent that this technology may be practical for commercial and business aircraft operations. By coupling the HWD with a head tracker, full-color, out-the-window display concepts with an unlimited field-of-regard may be realized to improve efficiency and safety in surface operations. A ground simulation experiment was conducted at NASA Langley to evaluate the efficacy of head-worn display applications which may directly address the limitations of the HUD while retaining all of its advantages in surface operations. The simulation experiment used airline crews to evaluate various displays (HUD, HWD) and display concepts in an operationally realistic environment by using a Chicago, O Hare airport database. The results pertaining to the implications of HWDs for commercial business and transport aviation applications are presented herein. Overall HWD system latency was measured and found to be acceptable, but not necessarily optimal. A few occurrences of simulator sickness were noted while wearing the HWD, but overall there appears to be commercial pilot acceptability and usability to the concept. Many issues were identified which need to be addressed in future research including continued reduction in user encumbrance due to the HWD, and improvement in image alignment, accuracy, and boresighting

    Flight demonstration of integrated airport surface automation concepts

    Get PDF
    A flight demonstration was conducted to address airport surface movement area capacity issues by providing pilots with enhanced situational awareness information. The demonstration showed an integration of several technologies to government and industry representatives. These technologies consisted of an electronic moving map display in the cockpit, a Differential Global Positioning System (DGPS) receiver, a high speed VHF data link, an ASDE-3 radar, and the Airport Movement Area Safety System (AMASS). Aircraft identification was presented to an air traffic controller on AMASS. The onboard electronic map included the display of taxi routes, hold instructions, and clearances, which were sent to the aircraft via data link by the controller. The map also displayed the positions of other traffic and warning information, which were sent to the aircraft automatically from the ASDE-3/AMASS system. This paper describes the flight demonstration in detail, along with preliminary results
    • …
    corecore