27 research outputs found

    Millisecond optical phase modulation using multipass configurations with liquid-crystal devices

    Get PDF
    We present two configurations for analog 0 to 2π optical phase modulation using liquid crystals (LCs), each of which achieve switching times that are 1 ms or less. One configuration is based on the switching behavior of a so-called nematic pi cell, and the other is based on the flexoelectro-optic effect in chiral nematic LCs when operated in the uniform lying helix geometry. Both configurations exploit a multipass optical arrangement to enhance the available optical phase range, while maintaining a fast switching speed. Moreover, these devices can be operated at or close to room temperature. Experimental data are found to be in good agreement with results predicted from theory for these multipass phase-modulation configurations

    Spatial optical solitons and optical gain in liquid crystal devices

    Get PDF

    Microsecond-range optical shutter for unpolarized light with chiral nematic liquid crystal

    Get PDF
    A fast electro-optic shutter is fabricated and demonstrated. The device works independently of the polarization state of the incoming light beam. Modulation between 3% transmission and 60% transmission is obtained within a wavelength range of 50 nm with a response time of 20 mu s. The device consists of two partly polymerized chiral nematic liquid crystal layers separated by a half wave plate. The transmission modulation is due to a 50 nm wavelength shift of the photonic band gap of the chiral liquid crystal realized by applying an electric field over a mixture of photo-polymerized LC and non-reactive nematic LC containing a chiral dopant. The shutter features high reflectivity in the photonic band gap. We investigate the influence of the amplitude of the applied voltage on the width and the depth of the reflection band. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License

    Flexoelectric Polarization in a Nematic Liquid Crystal Enhanced by Dopants with Different Molecular Shape Polarities

    Get PDF
    Funding Information: We would like to acknowledge the great support which we received from Prof. I. Muševič, JSI, Ljubljana, Slovenia, Dr M. Klasen-Memmer, Merck, Germany, Dr Santanu Kumar Pal and Dr Golam Mohiuddin, Indian Institute of Science Education and Research (IISER) Mohali, India, and Prof. P. Kula and K. Garbat, MUT, Warsaw, Poland. This work has been partially supported by SeeReal Technologies and MUT Research Grants 13-843/WAT/2022.Peer reviewedPublisher PD

    Flexoelectric blue phases

    Full text link
    We describe the occurence and properties of liquid crystal phases showing two dimensional splay and bend distortions which are stabilised by flexoelectric interactions. These phases are characterised by regions of locally double splayed order separated by topological defects and are thus highly analogous to the blue phases of cholesteric liquid crystals. We present a mean field analysis based upon the Landau--de Gennes Q-tensor theory and construct a phase diagram for flexoelectric structures using analytic and numerical results. We stress the similarities and discrepancies between the cholesteric and flexoelectric cases.Comment: 4 pages, accepted for publication in Phys. Rev. Let
    corecore