98 research outputs found

    Flexible, polarization-diverse UWB antennas for implantable neural recording systems

    Get PDF
    Implanted antennas for implant-to-air data communications must be composed of material compatible with biological tissues. We design single and dual-polarization antennas for wireless ultra-wideband neural recording systems using an inhomogeneous multi-layer model of the human head. Antennas made from flexible materials are more easily adapted to implantation; we investigate both flexible and rigid materials and examine performance trade-offs. The proposed antennas are designed to operate in a frequency range of 2-11 GHz (having S11 below -10 dB) covering both the 2.45 GHz (ISM) band and the 3.1-10.6 GHz UWB band. Measurements confirm simulation results showing flexible antennas have little performance degradation due to bending effects (in terms of impedance matching). Our miniaturized flexible antennas are 12 mm×12 mm and 10 mm×9 mm for single- and dual-polarizations, respectively. Finally, a comparison is made of four implantable antennas covering the 2-11 GHz range: 1) rigid, single polarization, 2) rigid, dual polarization, 3) flexible, single polarization and 4) flexible, dual polarization. In all cases a rigid antenna is used outside the body, with an appropriate polarization. Several advantages were confirmed for dual polarization antennas: 1) smaller size, 2) lower sensitivity to angular misalignments, and 3) higher fidelity

    Design and characterization of frequency reconfigurable honey bee antenna for cognitive radio application

    Get PDF
    In this article, a frequency reconfigurable honey-bee compact microstrip monopole antenna is proposed which is fed by a microstrip line (50 Ω) having the capability of providing dual-band as well as triple-band operation in eight distinct modes. By embedding three PIN diodes overs the honey bee arms, the effective current distribution is controlled hence resonant frequency is also changed in eight distinct modes in real-time. This is the reason the proposed antenna is portrayed as a frequency reconfigurable antenna in this paper which is suitable for cognitive radio application. This proposed antenna can be used for various wireless application such as Bluetooth, Wi-Fi, worldwide interoperability for microwave access (WiMAX), wireless local area network (WLAN), C-band, and X-band applications. The proposed antenna possesses a planner geometry of 39×34×0.87 mm3 which is printed on a substrate as flexible FR-4 (lossy) (εr=4.4 and tanδ=0.019). The proposed antenna exhibits voltage standing wave ratio (VSWR)<2 for all 19 resonant frequencies of interest and perceptible radiation pattern over entire frequency bands with a positive gain. CST microwave studio is used to find out all simulated results of antenna parameters

    UWB Technology

    Get PDF
    Ultra Wide Band (UWB) technology has attracted increasing interest and there is a growing demand for UWB for several applications and scenarios. The unlicensed use of the UWB spectrum has been regulated by the Federal Communications Commission (FCC) since the early 2000s. The main concern in designing UWB circuits is to consider the assigned bandwidth and the low power permitted for transmission. This makes UWB circuit design a challenging mission in today's community. Various circuit designs and system implementations are published in this book to give the reader a glimpse of the state-of-the-art examples in this field. The book starts at the circuit level design of major UWB elements such as filters, antennas, and amplifiers; and ends with the complete system implementation using such modules

    High-performance wireless interface for implant-to-air communications

    Get PDF
    Nous élaborons une interface cerveau-machine (ICM) entièrement sans fil afin de fournir un système de liaison directe entre le cerveau et les périphériques externes, permettant l’enregistrement et la stimulation du cerveau pour une utilisation permanente. Au cours de cette thèse, nous explorons la modélisation de canal, les antennes implantées et portables en tant que propagateurs appropriés pour cette application, la conception du nouveau système d’un émetteur-récepteur UWB implantable, la conception niveau système du circuit et sa mise en oeuvre par un procédé CMOS TSMC 0.18 um. En plus, en collaboration avec Université McGill, nous avons conçu un réseau de seize antennes pour une détection du cancer du sein à l’aide d’hyperfréquences. Notre première contribution calcule la caractérisation de canal de liaison sans fil UWB d’implant à l’air, l’absorption spécifique moyennée (ASAR), et les lignes directrices de la FCC sur la densité spectrale de puissance UWB transmis. La connaissance du comportement du canal est nécessaire pour déterminer la puissance maximale permise à 1) respecter les lignes directrices ANSI pour éviter des dommages aux tissus et 2) respecter les lignes directrices de la FCC sur les transmissions non autorisées. Nous avons recours à un modèle réaliste du canal biologique afin de concevoir les antennes pour l’émetteur implanté et le récepteur externe. Le placement des antennes est examiné avec deux scénarios contrastés ayant des contraintés de puissance. La performance du système au sein des tissus biologiques est examinée par l’intermédiaire des simulations et des expériences. Notre deuxième contribution est dédiée à la conception des antennes simples et à double polarisation pour les systèmes d’enregistrement neural sans fil à bande ultra-large en utilisant un modèle multicouches inhomogène de la tête humaine. Les antennes fabriquées à partir de matériaux flexibles sont plus facilement adaptées à l’implantation ; nous étudions des matériaux à la fois flexibles et rigides et examinons des compromis de performance. Les antennes proposées sont conçues pour fonctionner dans une plage de fréquence de 2-11 GHz (ayant S11-dessous de -10 dB) couvrant à la fois la bande 2.45 GHz (ISM) et la bande UWB 3.1-10.6 GHz. Des mesures confirment les résultats de simulation et montrent que les antennes flexibles ont peu de dégradation des performances en raison des effets de flexion (en termes de correspondance d’impédance). Finalement, une comparaison est réalisée entre quatre antennes implantables, couvrant la gamme 2-11 GHz : 1) une rigide, à la polarisation simple, 2) une rigide, à double polarisation, 3) une flexible, à simple polarisation et 4) une flexible, à double polarisation. Dans tous les cas une antenne rigide est utilisée à l’extérieur du corps, avec une polarisation appropriée. Plusieurs avantages ont été confirmés pour les antennes à la polarisation double : 1) une taille plus petite, 2) la sensibilité plus faible aux désalignements angulaires, et 3) une plus grande fidélité. Notre troisième contribution fournit la conception niveau système de l’architecture de communication sans fil pour les systèmes implantés qui stimulent simultanément les neurones et enregistrent les réponses de neurones. Cette architecture prend en charge un grand nombre d’électrodes (> 500), fournissant 100 Mb/s pour des signaux de stimulation de liaison descendante, et Gb/s pour les enregistrements de neurones de liaison montante. Nous proposons une architecture d’émetteur-récepteur qui partage une antenne ultra large bande, un émetteur-récepteur simplifié, travaillant en duplex intégral sur les deux bandes, et un nouveau formeur d’impulsions pour la liaison montante du Gb/s soutenant plusieurs formats de modulation. Nous présentons une démonstration expérimentale d’ex vivo de l’architecture en utilisant des composants discrets pour la réalisation les taux Gb/s en liaison montante. Une bonne performance de taux d’erreur de bit sur un canal biologique à 0,5, 1 et 2 Gb/s des débits de données pour la télémétrie de liaison montante (UWB) et 100 Mb/s pour la télémétrie en liaison descendante (bande 2.45 GHz) est atteinte. Notre quatrième contribution présente la conception au niveau du circuit d’un dispositif d’émission en duplex total qui est présentée dans notre troisième contribution. Ce dispositif d’émission en duplex total soutient les applications d’interfaçage neural multimodal et en haute densité (les canaux de stimulant et d’enregistrement) avec des débits de données asymétriques. L’émetteur (TX) et le récepteur (RX) partagent une seule antenne pour réduire la taille de l’implant. Le TX utilise impulse radio ultra-wide band (IR-UWB) basé sur une approche alliant des bords, et le RX utilise un nouveau 2.4 GHz récepteur on-off keying (OOK).Une bonne isolation (> 20 dB) entre le trajet TX et RX est mis en oeuvre 1) par mise en forme des impulsions transmises pour tomber dans le spectre UWB non réglementé (3.1-7 GHz), et 2) par un filtrage espace-efficace du spectre de liaison descendante OOK dans un amplificateur à faible bruit RX. L’émetteur UWB 3.1-7 GHz peut utiliser soit OOK soit la modulation numérique binaire à déplacement de phase (BPSK). Le FDT proposé offre une double bande avec un taux de données de liaison montante de 500 Mbps TX et un taux de données de liaison descendante de 100 Mb/s RX, et il est entièrement en conformité avec les standards TSMC 0.18 um CMOS dans un volume total de 0,8 mm2. Ainsi, la mesure de consommation d’énergie totale en mode full duplex est de 10,4 mW (5 mW à 100 Mb/s pour RX, et de 5,4 mW à 500 Mb/s ou 10,8 PJ / bits pour TX). Notre cinquième contribution est une collaboration avec l’Université McGill dans laquelle nous concevons des antennes simples et à double polarisation pour les systèmes de détection du cancer du sein à l’aide d’hyperfréquences sans fil en utilisant un modèle multi-couche et inhomogène du sein humain. Les antennes fabriquées à partir de matériaux flexibles sont plus facilement adaptées à des applications portables. Les antennes flexibles miniaturisées monopôles et spirales sur un 50 um Kapton polyimide sont conçus, en utilisant high frequency structure simulator (HFSS), à être en contact avec des tissus biologiques du sein. Les antennes proposées sont conçues pour fonctionner dans une gamme de fréquences de 2 à 4 GHz. Les mesures montrent que les antennes flexibles ont une bonne adaptation d’impédance dans les différentes positions sur le sein. De Plus, deux antennes à bande ultralarge flexibles 4 × 4 (simple et à double polarisation), dans un format similaire à celui d’un soutien-gorge, ont été développés pour un système de détection du cancer du sein basé sur le radar.We are working on a fully wireless brain-machine-interface to provide a communication link between the brain and external devices, enabling recording and stimulating the brain for permanent usage. In this thesis we explore channel modeling, implanted and wearable antennas as suitable propagators for this application, system level design of an implantable UWB transceiver, and circuit level design and implementing it by TSMC 0.18 um CMOS process. Also, in a collaboration project with McGill University, we designed a flexible sixteen antenna array for microwave breast cancer detection. Our first contribution calculates channel characteristics of implant-to-air UWB wireless link, average specific absorption rate (ASAR), and FCC guidelines on transmitted UWB power spectral density. Knowledge of channel behavior is required to determine the maximum allowable power to 1) respect ANSI guidelines for avoiding tissue damage and 2) respect FCC guidelines on unlicensed transmissions. We utilize a realistic model of the biological channel to inform the design of antennas for the implanted transmitter and the external receiver. Antennas placement is examined under two scenarios having contrasting power constraints. Performance of the system within the biological tissues is examined via simulations and experiments. Our second contribution deals with designing single and dual-polarization antennas for wireless ultra-wideband neural recording systems using an inhomogeneous multi-layer model of the human head. Antennas made from flexible materials are more easily adapted to implantation; we investigate both flexible and rigid materials and examine performance trade-offs. The proposed antennas are designed to operate in a frequency range of 2–11 GHz (having S11 below -10 dB) covering both the 2.45 GHz (ISM) band and the 3.1–10.6 GHz UWB band. Measurements confirm simulation results showing flexible antennas have little performance degradation due to bending effects (in terms of impedance matching). Finally, a comparison is made of four implantable antennas covering the 2-11 GHz range: 1) rigid, single polarization, 2) rigid, dual polarization, 3) flexible, single polarization and 4) flexible, dual polarization. In all cases a rigid antenna is used outside the body, with an appropriate polarization. Several advantages were confirmed for dual polarization antennas: 1) smaller size, 2) lower sensitivity to angular misalignments, and 3) higher fidelity. Our third contribution provides system level design of wireless communication architecture for implanted systems that simultaneously stimulate neurons and record neural responses. This architecture supports large numbers of electrodes (> 500), providing 100 Mb/s for the downlink of stimulation signals, and Gb/s for the uplink neural recordings. We propose a transceiver architecture that shares one ultra-wideband antenna, a streamlined transceiver working at full-duplex on both bands, and a novel pulse shaper for the Gb/s uplink supporting several modulation formats. We present an ex-vivo experimental demonstration of the architecture using discrete components achieving Gb/s uplink rates. Good bit error rate performance over a biological channel at 0.5, 1, and 2 Gbps data rates for uplink telemetry (UWB) and 100 Mbps for downlink telemetry (2.45 GHz band) is achieved. Our fourth contribution presents circuit level design of the novel full-duplex transceiver (FDT) which is presented in our third contribution. This full-duplex transceiver supports high-density and multimodal neural interfacing applications (high-channel count stimulating and recording) with asymmetric data rates. The transmitter (TX) and receiver (RX) share a single antenna to reduce implant size. The TX uses impulse radio ultra-wide band (IR-UWB) based on an edge combining approach, and the RX uses a novel 2.4-GHz on-off keying (OOK) receiver. Proper isolation (> 20 dB) between the TX and RX path is implemented 1) by shaping the transmitted pulses to fall within the unregulated UWB spectrum (3.1-7 GHz), and 2) by spaceefficient filtering (avoiding a circulator or diplexer) of the downlink OOK spectrum in the RX low-noise amplifier. The UWB 3.1-7 GHz transmitter can use either OOK or binary phase shift keying (BPSK) modulation schemes. The proposed FDT provides dual band 500-Mbps TX uplink data rate and 100 Mbps RX downlink data rate, and it is fully integrated into standard TSMC 0.18 um CMOS within a total size of 0.8 mm2. The total measured power consumption is 10.4 mW in full duplex mode (5 mW at 100 Mbps for RX, and 5.4 mW at 500 Mbps or 10.8 pJ/bit for TX). Our fifth contribution is a collaboration project with McGill University which we design single and dual-polarization antennas for wireless ultra-wideband breast cancer detection systems using an inhomogeneous multi-layer model of the human breast. Antennas made from flexible materials are more easily adapted to wearable applications. Miniaturized flexible monopole and spiral antennas on a 50 um Kapton polyimide are designed, using a high frequency structure simulator (HFSS), to be in contact with biological breast tissues. The proposed antennas are designed to operate in a frequency range of 2–4 GHz (with reflection coefficient (S11) below -10 dB). Measurements show that the flexible antennas have good impedance matching while in different positions with different curvature around the breast. Furthermore, two flexible conformal 4×4 ultra-wideband antenna arrays (single and dual polarization), in a format similar to that of a bra, were developed for a radar-based breast cancer detection system

    Wearable devices for microwave head diagnostic systems

    Get PDF
    Although current head imaging technologies such as magnetic resonance imaging (MRI) and computed tomography (CT) are capable of providing accurate diagnosis of brain injuries such as stroke and brain tumour, they have several limitations including high cost, long scanning time, bulky and mostly stationary. On the other hand, radar-based microwave imaging technology can offer a low cost, non-invasive and non-ionisation method to complement these existing imaging techniques. Moreover, a compact and wearable device for microwave head imaging is required to facilitate frequent or real-time monitoring of a patient by providing more comfort to the patient. Therefore, a wearable head imaging device would be a significant advantage compared to the existing wideband microwave head sensing devices which typically utilise rigid antenna structure. Furthermore, the wearable device can be integrated into different microwave imaging setups such as real-time wearable head imaging systems, portable systems and conventional stationary imaging tools for use in hospitals and clinics. This thesis presents the design and development of wearable devices utilising flexible antenna arrays and compact radio frequency (RF) switching circuits for wideband microwave head imaging applications. The design and characterisation of sensing antennas using flexible materials for the wearable head imaging device are presented in the first stage of this study. There are two main variations of monopole antennas that have been developed in this research, namely trapezoidal and elliptical configurations. The antennas have been fabricated using different flexible substrate materials such as flexible FR-4, polyethylene terephthalate (PET) and textile. Wideband performances of the antennas have been achieved by optimising their co-planar waveguide feeding line structures. Importantly, the efficiencies of the fabricated antennas have been tested using a realistic human head phantom by evaluating their impedance matching performances when operating in close proximity to the head phantom. The second stage of the study presents the development of wearable antenna arrays using the proposed flexible antennas. The first prototype has been built using an array of 12 flexible antennas and a conformal absorbing material backed with a conductive sheet to suppress the back lobe radiation of the monopole antennas. Additionally, the absorber also acts as a mounting base to hold the antennas where the wearable device can be comfortably worn like a hat during the measurement and monitoring processes. The effect of mutual coupling between adjacent antennas in the array has been investigated and optimised. However, the use of the absorbing material makes the device slightly rigid where it can only be fitted on a specific head size. Thus, a second prototype has been developed by using a head band to realise a stretchable configuration that can be mounted on different sizes of human heads. Furthermore, due to the stretchable characteristic of the prototype, the antennas can be firmly held in their positions when measurements are made. In addition, fully textile based sensing antennas are employed in this prototype making it perfectly suitable for monitoring purposes. Low cost and compact switching circuits to provide switching mechanism for the wearable antenna array are presented in the third stage of this study. The switching circuit is integrated with the antenna array to form a novel wearable microwave head imaging device eliminating the use of external bulky switching network. The switching circuit has been built using off-the-shelf components where it can be controlled wirelessly over Bluetooth connection. Then, a new integrated switching circuit prototype has been fabricated using 6-layer printed circuit board (PCB) technology. For the purpose of impedance matching for the radio-frequency (RF) routing lines on the circuit, a wideband Microstrip-to-Microstrip transition is utilised. The final stage of this study investigates the efficacy and sensitivity of the proposed wearable devices by performing experiments on developed realistic human head phantoms. Initially, a human head phantom has been fabricated using food-based ingredients such as tap water, sugar, salt, and agar. Subsequently, lamb’s brains have been used to improve the head phantom employed in the experiments to better mimic the heterogeneous human brain. In terms of imaging process, an interpolation technique developed using experimental data has been proposed to assist the localisation of a haemorrhage stroke location using the confocal delay-and-sum algorithm. This new technique is able to provide sensible accuracy of the location of the blood clot inside the brain. The wearable antenna arrays using flexible antennas and their integrations with compact and low cost switching circuits reported in this thesis make valuable contribution to microwave head imaging field. It is expected that a low-cost, compact and wearable radar-based microwave head imaging can be fully realised in the future for wide range of applications including static scanning setup in hospitals, portable equipment in ambulances and as a standalone wearable head monitoring system for remote and real-time monitoring purposes

    Reconfigurable Antennas

    Get PDF
    In this new book, we present a collection of the advanced developments in reconfigurable antennas and metasurfaces. It begins with a review of reconfigurability technologies, and proceeds to the presentation of a series of reconfigurable antennas, UWB MIMO antennas and reconfigurable arrays. Then, reconfigurable metasurfaces are introduced and the latest advances are presented and discussed

    Antenna Designs for 5G/IoT and Space Applications

    Get PDF
    This book is intended to shed some light on recent advances in antenna design for these new emerging applications and identify further research areas in this exciting field of communications technologies. Considering the specificity of the operational environment, e.g., huge distance, moving support (satellite), huge temperature drift, small dimension with respect to the distance, etc, antennas, are the fundamental device allowing to maintain a constant interoperability between ground station and satellite, or different satellites. High gain, stable (in temperature, and time) performances, long lifecycle are some of the requirements that necessitates special attention with respect to standard designs. The chapters of this book discuss various aspects of the above-mentioned list presenting the view of the authors. Some of the contributors are working strictly in the field (space), so they have a very targeted view on the subjects, while others with a more academic background, proposes futuristic solutions. We hope that interested reader, will find a fertile source of information, that combined with their interest/background will allow efficiently exploiting the combination of these two perspectives

    Reconfigurable Antennas and their Applications

    Get PDF
    One of the biggest challenge in modern communication systems is to provide a single antenna for different applications. Existing antenna systems are limited to some applications. So it is important to design a single reconfigurable antenna for multiple applications. Five different reconfigurable printed antennas for different applications are designed during the study of this thesis. In the first design an antenna for frequency reconfigurable applications is designed. The electrical length of the conductor is changed using PIN diodes and the resonance of antenna is shifted from 4.27 GHz to 3.56 GHz. Good agreement between simulated and measured results is observed. In the second and third designs, Ultra wideband (UWB) Multiple-Input Multiple-Output (MIMO) antennas with on-demand Wireless Local Area Network (WLAN) rejection are designed. The second design consists of two elements UWB-MIMO antenna and stubs are connected to the ground plane using PIN diodes. These stubs act as a stop-band filter and reject the band at 5.5 GHz center frequency. This design has a compact size of 23 x 39.8 mm2. The third design has almost same features as of second design but it has four elements. These elements are placed orthogonally to each other. The total size of this proposed design is 50 x 39.8 mm2. The ground plane is common and a band-stop design is placed between the ground planes. This band-stop design is connected with the ground plane using PIN diodes. When diodes are biased, the current is travelled to the nearly placed band-stop design and a notch is obtained around 5.5 GHz. In fourth design a reconfigurable array with a sensing circuit is designed. The array consists of four individual reconfigurable patches which are attached to the different conformal surfaces. These patches are reconfigured from 3.15 GHz to 2.43 GHz using PIN diodes. The correct phase at each element is provided using phase shifters. The sensing circuit is designed in such a way that only input voltage is changed to provide the correct phase on the switching frequency. The patterns of the array are recovered on both switching frequencies when array is attached to wedge or cylindrical surface. In the last design a series-fed array is designed. Composite Right/Left Handed Transmission Line (CRLH-TLs) are used instead of traditional meanderline microstrip lines to connect the array elements. These CRLH-TLs provided the zero phase at each connecting element, which resulted in broad side radiation patterns. To reconfigure the antenna to another frequency a small patch and second CRLH-TL is connected between array element

    Frequency Tunable Filtenna Using Defected Ground Structure Filter in the Sub-6 GHz for Cognitive Radio Applications

    Get PDF
    In this paper, a new frequency tunable filtering-antenna (so-called filtenna) is inspired by a Defected Ground Structure (DGS) band-pass filter for the fifth generation picocell base stations. It is intended for use in Cognitive Radio (CR) communications within the European Union Sub-6 GHz spectrum, which ranges between 3.4 and 3.8 GHz. Firstly, a Wideband (WB) monopole antenna is proposed where the operational frequencies cover 3.15–4.19 GHz, taking the 10-dB return loss level as a threshold. A band-pass filter of a Semi-Square Semi-Circle shape is integrated into the WB antenna ground to obtain the communicating filtenna. The narrowband frequency tunability is achieved by changing two varactor diode capacitances located in the filter slots. The antenna is prototyped occupying a total space of 60 7 80 7 0.77 mm3, then tested to verify the simulated results. Three operating frequencies 3.4, 3.6, and 3.8 GHz of the filtenna are studied in terms of return loss, realized gain, and radiation patterns which verify that the frequency shift has almost no effect on the antenna performance. The filtenna has a maximum gain of 4.5 dBi in measurements and 3.47 dBi in simulations. The obtained results have proved their efficiency for CR communications

    ANALYSIS AND DESIGN OF ANTENNA PROBES FOR DETECTION / IMAGING APPLICATIONS

    Get PDF
    Analysis and Design of Antenna Probes for Detection / Imaging Applications Ayman Elboushi, Ph.D. Concordia University. As a result of increasing international terrorist threats, the need for an efficient inspecting tool has become urgent. Not only for seeing through wall applications, but also to be employed as a safe human body scanner at public places such as airports and borders. The usage of microwave and millimeter wave antennas and systems for detection / imaging applications is currently of increasing research interest targeting the enhancement of different security systems. There are many challenges facing researchers in order to develop such systems. One of the challenges is the proper design of a low cost, reduced size and efficient antenna probe to work as a scanning sensor. In this thesis, two different technology choices of antenna probes for the feasibility of constructing detection / imaging systems are investigated. The first one covers the Ultra Wide Band (UWB) range (3.1 GHz to 10.6 GHz), while the second operates over the Millimeter-Wave (MMW) range. In addition to the development of several antenna probes, two detection / imaging systems are demonstrated and showed reasonably accurate detection results. Three different UWB monopole antenna prototypes, with different radiator shapes (circular, crescent and elliptical) have been introduced. These antennas are designed using a standard printed circuit board (PCB) process to work as probing sensors in a proposed UWB detection / imaging system. In order to enhance the resolution and the detection accuracy of the probe, 4-element Balanced Antipodal Vivaldi Antenna (BAVA) array fed by 1-to-4 UWB modified Wilkinson power divider has been developed. Some successful experiments have been conducted using the proposed UWB detection / imaging system combined with the fabricated antenna probes to detect the presence of a gap between two walls made of different material types, to evaluate the gap width and to estimate the size and exact location of a hidden target between the walls. The second research theme of this thesis is to develop small-sized, light-weight and high gain MMW scanning antenna probes. For the realization of such probes, several gain enhancement techniques have been adopted, including hybridization and a multi-element array principle. Several high-gain hybrid antennas have been designed, fabricated and tested. For demonstration purposes, experiments have been carried out for detecting and imaging a small metallic coin under the jeans layer of a three-layer target emulating a human body’s covering layers. A performance comparison between a standard metallic MMW horn and hybrid microstrip patch/conical horn antenna has been made. The proposed reduced size antenna sensor shows increased efficiency compared with the bulky horn antenna. Resolution enhancement of the reconstructed image of the hidden target is implemented using a new triple-antenna MMW sensor. The triple-antenna sensor consists of three adjacent microstrip patch / conical horn antennas separated by 1.5 wavelengths at the center frequency for coupling reduction between these elements. The middle element of the sensor is used for monitoring the time domain back-reflected signal from the target under inspection, while the side elements are used for monitoring the scattered signals. By the aid of a special signal processing algorithm, an enhanced image of the concealed object can be obtained by combining the three readings of each point in the area under study. The proposed system shows a great ability for detecting a hidden target and enhances the reconstructed image resolution
    • …
    corecore