36 research outputs found

    Flexible quantum private queries based on quantum key distribution

    Full text link
    We present a flexible quantum-key-distribution-based protocol for quantum private queries. Similar to M. Jakobi et al's protocol [Phys. Rev. A 83, 022301 (2011)], it is loss tolerant, practical and robust against quantum memory attack. Furthermore, our protocol is more flexible and controllable. We show that, by adjusting the value of θ\theta, the average number of the key bits Alice obtains can be located on any fixed value the users wanted for any database size. And the parameter kk is generally smaller (even k=1k=1 can be achieved) when θ<π/4\theta<\pi/4, which implies lower complexity of both quantum and classical communications. Furthermore, the users can choose a smaller θ\theta to get better database security, or a larger θ\theta to obtain a lower probability with which Bob can correctly guess the address of Alice's query.Comment: 6 pages, 5 figure

    Improved and Formal Proposal for Device Independent Quantum Private Query

    Full text link
    In this paper, we propose a novel Quantum Private Query (QPQ) scheme with full Device-Independent certification. To the best of our knowledge, this is the first time we provide such a full DI-QPQ scheme using EPR-pairs. Our proposed scheme exploits self-testing of shared EPR-pairs along with the self-testing of projective measurement operators in a setting where the client and the server do not trust each other. To certify full device independence, we exploit a strategy to self-test a particular class of POVM elements that are used in the protocol. Further, we provide formal security analysis and obtain an upper bound on the maximum cheating probabilities for both the dishonest client as well as the dishonest server.Comment: 33 pages, 2 figure

    Quantum cryptography: key distribution and beyond

    Full text link
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Comment: It's a review on quantum cryptography and it is not restricted to QK

    Quantum Cryptography: Key Distribution and Beyond

    Get PDF
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Quanta 2017; 6: 1–47

    Semi-Quantum Conference Key Agreement (SQCKA)

    Get PDF
    A need in the development of secure quantum communications is the scalable extension of key distribution protocols. The greatest advantage of these protocols is the fact that its security does not rely on mathematical assumptions and can achieve perfect secrecy. In order to make these protocols scalable, has been developed the concept of Conference Key Agreements, among multiple users. In this thesis we propose a key distribution protocol among several users using a semi-quantum approach. We assume that only one of the users is equipped with quantum devices and generates quantum states, while the other users are classical, i.e., they are only equipped with a device capable of measuring or reflecting the information. This approach has the advantage of simplicity and reduced costs. We prove our proposal is secure and we present some numerical results on the lower bounds for the key rate. The security proof applies new techniques derived from some already well established work. From the practical point of view, we developed a toolkit called Qis|krypt⟩ that is able to simulate not only our protocol but also some well-known quantum key distribution protocols. The source-code is available on the following link: - https://github.com/qiskrypt/qiskrypt/.Uma das necessidades no desenvolvimento de comunicações quânticas seguras é a extensão escalável de protocolos de distribuição de chaves. A grande vantagem destes protocolos é o facto da sua segurança não depender de suposições matemáticas e poder atingir segurança perfeita. Para tornar estes protocolos escaláveis, desenvolveu-se o conceito de Acordo de Chaves de Conferência, entre múltiplos utilizadores. Nesta tese propomos um protocolo para distribuição de chaves entre vários utilizadores usando uma abordagem semi-quântica. Assumimos que apenas um dos utilizadores está equipado com dispositivos quânticos e é capaz de gerar estados quânticos, enquanto que os outros utilizadores são clássicos, isto é, estão apenas equipados com dispositivos capazes de efectuar uma medição ou refletir a informação. Esta abordagem tem a vantagem de ser mais simples e de reduzir custos. Provamos que a nossa proposta é segura e apresentamos alguns resultados numéricos sobre limites inferiores para o rácio de geração de chaves. A prova de segurança aplica novas técnicas derivadas de alguns resultados já bem estabelecidos. Do ponto de vista prático, desenvolvemos uma ferramenta chamada Qis|krypt⟩ que é capaz de simular não só o nosso protocolo como também outros protocolos distribuição de chaves bem conhecidos. O código fonte encontra-se disponível no seguinte link: - https://github.com/qiskrypt/qiskrypt/
    corecore