637 research outputs found

    Printed electronics

    Get PDF
    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed

    Synthesis and Drop-on-Demand Deposition of Graphene Derivative Inks for Flexible Thin Film Electronics

    Get PDF
    This dissertation presents methods for deposition and post-processing of Graphene-Carboxymethyl Cellulose (G-CMC) and Graphene Oxide (GO) aqueous functional inks using a custom drop-on-demand (DOD) printer to fabricate mechanically flexible, non-transparent and transparent thin film electronic devices. Thin films on flexible substrates find use in lightweight, low profile, and conformable electronic devices. Such devices can include chemical sensors, flexible RFID tags, bioelectronics circuits, lightweight electronics for space systems, and transparent electrodes for optoelectronic systems. The goal of this research project is to provide simple methods for fabrication of these devices using environmentally friendly and easy to synthesize functional inks. Therefore, two graphene based inks are utilized; GO and a novel Carboxymethyl Cellulose (CMC) functionalized aqueous dispersion of Graphene, G-CMC. Proposed functional inks are deposited on treated substrates by DOD printing. Deposited thin films were post-processed by use of a muffle furnace or a pulsed laser system. Furthermore, gold doped G-CMC films and G-Silver Nanoprism (G-AgNP) composite inks were developed to enhance film electrical properties. Inkjet printed films on glass substrates were characterized in terms of their electrical, optical, and mechanical properties. Correlations between film thickness, optical transmittance, and conductivity were investigated. It was possible to deposit homogeneous thin films at 100 nm to 2000 nm thickness. G-CMC films exhibited good scaling of conductance where thicker films had ~ 660 Ω/sq sheet resistance. Gold doped and G-AgNP composite semi-transparent films exhibited enhanced conductance with sheet resistances of ~ 700 Ω/sq at 35% transparency and ~ 374 Ω/sq at 50% transparency, respectively. Laser assisted treatment of samples was conducted to investigate two opportunities; pulsed laser thermal treatment and pulsed laser micromachining on rigid and flexible substrates. Effect of laser parameters was investigated to establish guidelines for thin film thermal treatment and micromachining Finally, novel flexible sensors and circuits were fabricated to demonstrate task driven performance of proposed materials and methods. Based on the presented work, proposed methods and functional inks show promise for fabricating simple electronic devices on flexible and rigid substrates. It is believed that presented advances may benefit industrial fields that require scalable and simple thin film fabrication methods

    Printed Electronics

    Get PDF
    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed

    Printed Electronics

    Get PDF
    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed

    Printed Electronics

    Get PDF
    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed

    Additive Manufacturing of Conducting Polymers: Recent Advances, Challenges and Opportunities

    Get PDF
    Unformatted postprintConducting polymers (CPs) have been attracting great attention in the development of (bio)electronic devices. Most of current devices are rigid 2D systems and possess uncontrollable geometries and architectures that lead to poor mechanical properties presenting ion/electronic diffusion limitations. The goal of the article is to provide an overview about the additive manufacturing (AM) of conducting polymers, which is of paramount importance for the design of future wearable 3D (bio)electronic devices. Among different 3D printing AM techniques, inkjet, extrusion, electrohydrodynamic and light-based printing have been mainly used. This review article collects examples of 3D printing of conducting polymers such as poly(3,4-ethylene-dioxythiophene) (PEDOT), polypyrrole (PPy) and polyaniline (PANi). It also shows examples of AM of these polymers combined with other polymers and/or conducting fillers such as carbon nanotubes, graphene and silver nanowires. Afterwards, the foremost application of CPs processed by 3D printing techniques in the biomedical and energy fields, i.e., wearable electronics, sensors, soft robotics for human motion, or health monitoring devices, among others, will be discussed.This work was supported by Marie Sklodowska-Curie Research and Innovation Staff Exchanges (RISE) under the grant agreement No 823989 “IONBIKE”. N.A. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 753293, acronym NanoBEAT

    Integration of conductive materials with textile structures : an overview

    Get PDF
    In the last three decades, the development of new kinds of textiles, so-called smart and interactive textiles, has continued unabated. Smart textile materials and their applications are set to drastically boom as the demand for these textiles has been increasing by the emergence of new fibers, new fabrics, and innovative processing technologies. Moreover, people are eagerly demanding washable, flexible, lightweight, and robust e-textiles. These features depend on the properties of the starting material, the post-treatment, and the integration techniques. In this work, a comprehensive review has been conducted on the integration techniques of conductive materials in and onto a textile structure. The review showed that an e-textile can be developed by applying a conductive component on the surface of a textile substrate via plating, printing, coating, and other surface techniques, or by producing a textile substrate from metals and inherently conductive polymers via the creation of fibers and construction of yarns and fabrics with these. In addition, conductive filament fibers or yarns can be also integrated into conventional textile substrates during the fabrication like braiding, weaving, and knitting or as a post-fabrication of the textile fabric via embroidering. Additionally, layer-by-layer 3D printing of the entire smart textile components is possible, and the concept of 4D could play a significant role in advancing the status of smart textiles to a new level

    Soft electronics by inkjet printing metal inks on porous substrates

    Get PDF
    Soft electronic devices enable new types of products for an ergonomic interaction of humans with a digital environment. The inkjet (droplet on demand) printing of electrically conductive ink in plural on soft substrates such as paper, textile, and polymers is a promising route for the prototyping and small-scale production of soft electronics that is efficient, cost-saving, and provides a rapid turnaround due to its fully digital workflow. The choice of materials and processing parameters is challenging, however, due to the combined complexity of metal-containing inks, their dynamics during droplet ejection, the active role of the porous substrate, and possible post-deposition steps. This review focuses on recent developments in inkjet printing of metal inks onto soft, porous substrates and their applications. The first section discusses the general principles in the inkjet printing of metal inks, including drop formation and jetting, wetting, and post treatment processes. The second section deals with the effect that the porosity of substrates has on the drying, diffusion, and adhesion of inks. Finally, current challenges and achievements of inkjet-printed, metal-containing inks are discussed
    corecore