3,229 research outputs found

    Flexible distribution of complexity by hybrid predictive-distributed video coding

    Get PDF
    There is currently limited flexibility for distributing complexity in a video coding system. While rate-distortion-complexity (RDC) optimization techniques have been proposed for conventional predictive video coding with encoder-side motion estimation, they fail to offer true flexible distribution of complexity between encoder and decoder since the encoder is assumed to have always more computational resources available than the decoder. On the other hand, distributed video coding solutions with decoder-side motion estimation have been proposed, but hardly any RDC optimized systems have been developed. To offer more flexibility for video applications involving multi-tasking or battery-constrained devices, in this paper, we propose a codec combining predictive video coding concepts and techniques from distributed video coding and show the flexibility of this method in distributing complexity. We propose several modes to code frames, and provide complexity analysis illustrating encoder and decoder computational complexity for each mode. Rate distortion results for each mode indicate that the coding efficiency is similar. We describe a method to choose which mode to use for coding each inter frame, taking into account encoder and decoder complexity constraints, and illustrate how complexity is distributed more flexibly

    Hierarchical motion estimation for side information creation in Wyner-Ziv video coding

    Full text link
    Recently, several video coding solutions based on the distributed source coding paradigm have appeared in the literature. Among them, Wyner-Ziv video coding schemes enable to achieve a flexible distribution of the computational complexity between the encoder and decoder, promising to fulfill requirements of emerging applications such as visual sensor networks and wireless surveillance. To achieve a performance comparable to the predictive video coding solutions, it is necessary to increase the quality of the side information, this means the estimation of the original frame created at the decoder. In this paper, a hierarchical motion estimation (HME) technique using different scales and increasingly smaller block sizes is proposed to generate a more reliable estimation of the motion field. The HME technique is integrated in a well known motion compensated frame interpolation framework responsible for the creation of the side information in a Wyner-Ziv video decoder. The proposed technique enables to achieve improvements in the rate-distortion (RD) performance up to 7 dB when compared to H.263+ Intra and 3 dB when compared to H.264/AVC Intra

    Advanced side information creation techniques and framework for Wyner-Ziv video coding

    Get PDF
    Recently, several distributed video coding (DVC) solutions based on the distributed source coding (DSC) paradigm have appeared in the literature. Wyner-Ziv (WZ) video coding, a particular case of DVC where side information is made available at the decoder, enable to achieve a flexible distribution of the computational complexity between the encoder and decoder, promising to fulfill novel requirements from applications such as video surveillance, sensor networks and mobile camera phones. The quality of the side information at the decoder has a critical role in determining the WZ video coding rate-distortion (RD) performance, notably to raise it to a level as close as possible to the RD performance of standard predictive video coding schemes. Towards this target, efficient motion search algorithms for powerful frame interpolation are much needed at the decoder. In this paper, the RD performance of a Wyner-Ziv video codec is improved by using novel, advanced motion compensated frame interpolation techniques to generate the side information. The development of these type of side information estimators is a difficult problem in WZ video coding, especially because the decoder only has available some reference, decoded frames. Based on the regularization of the motion field, novel side information creation techniques are proposed in this paper along with a new frame interpolation framework able to generate higher quality side information at the decoder. To illustrate the RD performance improvements, this novel side information creation framework has been integrated in a transform domain turbo coding based Wyner-Ziv video codec. Experimental results show that the novel side information creation solution leads to better RD performance than available state-of-the-art side information estimators, with improvements up to 2 dB: moreover, it allows outperforming H.264/AVC Intra by up to 3 dB with a lower encoding complexity

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    Fulcrum: Flexible Network Coding for Heterogeneous Devices

    Get PDF
    ProducciĂłn CientĂ­ficaWe introduce Fulcrum, a network coding framework that achieves three seemingly conflicting objectives: 1) to reduce the coding coefficient overhead down to nearly n bits per packet in a generation of n packets; 2) to conduct the network coding using only Galois field GF(2) operations at intermediate nodes if necessary, dramatically reducing computing complexity in the network; and 3) to deliver an end-to-end performance that is close to that of a high-field network coding system for high-end receivers, while simultaneously catering to low-end receivers that decode in GF(2). As a consequence of 1) and 3), Fulcrum has a unique trait missing so far in the network coding literature: providing the network with the flexibility to distribute computational complexity over different devices depending on their current load, network conditions, or energy constraints. At the core of our framework lies the idea of precoding at the sources using an expansion field GF(2 h ), h > 1, to increase the number of dimensions seen by the network. Fulcrum can use any high-field linear code for precoding, e.g., Reed-Solomon or Random Linear Network Coding (RLNC). Our analysis shows that the number of additional dimensions created during precoding controls the trade-off between delay, overhead, and computing complexity. Our implementation and measurements show that Fulcrum achieves similar decoding probabilities as high field RLNC but with encoders and decoders that are an order of magnitude faster.Green Mobile Cloud project (grant DFF-0602-01372B)Colorcast project (grant DFF-0602-02661B)TuneSCode project (grant DFF - 1335-00125)Danish Council for Independent Research (grant DFF-4002-00367)Ministerio de EconomĂ­a, Industria y Competitividad - Fondo Europeo de Desarrollo Regional (grants MTM2012-36917-C03-03 / MTM2015-65764-C3-2-P / MTM2015-69138-REDT)Agencia Estatal de InvestigaciĂłn - Fondo Social Europeo (grant RYC-2016-20208)Aarhus Universitets Forskningsfond Starting (grant AUFF-2017-FLS-7-1

    Improved compression performance for distributed video coding

    Get PDF
    • …
    corecore