4,428 research outputs found

    Automated highway systems : platoons of vehicles viewed as a multiagent system

    Get PDF
    Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2005-2006La conduite collaborative est un domaine lié aux systèmes de transport intelligents, qui utilise les communications pour guider de façon autonome des véhicules coopératifs sur une autoroute automatisée. Depuis les dernières années, différentes architectures de véhicules automatisés ont été proposées, mais la plupart d’entre elles n’ont pas, ou presque pas, attaqué le problème de communication inter véhicules. À l’intérieur de ce mémoire, nous nous attaquons au problème de la conduite collaborative en utilisant un peloton de voitures conduites par des agents logiciels plus ou moins autonomes, interagissant dans un même environnement multi-agents: une autoroute automatisée. Pour ce faire, nous proposons une architecture hiérarchique d’agents conducteurs de voitures, se basant sur trois couches (couche de guidance, couche de management et couche de contrôle du trafic). Cette architecture peut être utilisée pour développer un peloton centralisé, où un agent conducteur de tête coordonne les autres avec des règles strictes, et un peloton décentralisé, où le peloton est vu comme une équipe d’agents conducteurs ayant le même niveau d’autonomie et essayant de maintenir le peloton stable.Collaborative driving is a growing domain of Intelligent Transportation Systems (ITS) that makes use of communications to autonomously guide cooperative vehicles on an Automated Highway System (AHS). For the past decade, different architectures of automated vehicles have been proposed, but most of them did not or barely addressed the inter-vehicle communication problem. In this thesis, we address the collaborative driving problem by using a platoon of cars driven by more or less autonomous software agents interacting in a Multiagent System (MAS) environment: the automated highway. To achieve this, we propose a hierarchical driving agent architecture based on three layers (guidance layer, management layer and traffic control layer). This architecture can be used to develop centralized platoons, where the driving agent of the head vehicle coordinates other driving agents by applying strict rules, and decentralized platoons, where the platoon is considered as a team of driving agents with a similar degree of autonomy, trying to maintain a stable platoon

    Advanced Mobile Robotics: Volume 3

    Get PDF
    Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective

    Vehicle and Traffic Safety

    Get PDF
    The book is devoted to contemporary issues regarding the safety of motor vehicles and road traffic. It presents the achievements of scientists, specialists, and industry representatives in the following selected areas of road transport safety and automotive engineering: active and passive vehicle safety, vehicle dynamics and stability, testing of vehicles (and their assemblies), including electric cars as well as autonomous vehicles. Selected issues from the area of accident analysis and reconstruction are discussed. The impact on road safety of aspects such as traffic control systems, road infrastructure, and human factors is also considered

    Platooning-based control techniques in transportation and logistic

    Get PDF
    This thesis explores the integration of autonomous vehicle technology with smart manufacturing systems. At first, essential control methods for autonomous vehicles, including Linear Matrix Inequalities (LMIs), Linear Quadratic Regulation (LQR)/Linear Quadratic Tracking (LQT), PID controllers, and dynamic control logic via flowcharts, are examined. These techniques are adapted for platooning to enhance coordination, safety, and efficiency within vehicle fleets, and various scenarios are analyzed to confirm their effectiveness in achieving predetermined performance goals such as inter-vehicle distance and fuel consumption. A first approach on simplified hardware, yet realistic to model the vehicle's behavior, is treated to further prove the theoretical results. Subsequently, performance improvement in smart manufacturing systems (SMS) is treated. The focus is placed on offline and online scheduling techniques exploiting Mixed Integer Linear Programming (MILP) to model the shop floor and Model Predictive Control (MPC) to adapt scheduling to unforeseen events, in order to understand how optimization algorithms and decision-making frameworks can transform resource allocation and production processes, ultimately improving manufacturing efficiency. In the final part of the work, platooning techniques are employed within SMS. Autonomous Guided Vehicles (AGVs) are reimagined as autonomous vehicles, grouping them within platoon formations according to different criteria, and controlled to avoid collisions while carrying out production orders. This strategic integration applies platooning principles to transform AGV logistics within the SMS. The impact of AGV platooning on key performance metrics, such as makespan, is devised, providing insights into optimizing manufacturing processes. Throughout this work, various research fields are examined, with intersecting future technologies from precise control in autonomous vehicles to the coordination of manufacturing resources. This thesis provides a comprehensive view of how optimization and automation can reshape efficiency and productivity not only in the domain of autonomous vehicles but also in manufacturing

    How do drivers negotiate intersections with pedestrians? The importance of pedestrian time-to-arrival and visibility

    Get PDF
    Forward collision warning (FCW) and autonomous emergency braking (AEB) systems are increasingly available and prevent or mitigate collisions by alerting the driver or autonomously braking the vehicle. Threat-assessment and decision-making algorithms for FCW and AEB aim to find the best compromise for safety by intervening at the “right” time: neither too early, potentially upsetting the driver, nor too late, possibly missing opportunities to avoid the collision.Today, the extent to which activation times for FCW and AEB should depend on factors such as pedestrian speed and lane width is unknown. To guide the design of FCW and AEB intervention time, we employed a fractional factorial design, and determined how seven factors (crossing side, car speed, pedestrian speed, crossing angle, pedestrian size, zebra-crossing presence, and lane width) affect the driver’s response process and comfort zone when negotiating an intersection with a pedestrian. Ninety-four volunteers drove through an intersection in a fixed-base driving simulator, which was based on open-source software (OpenDS). Several parameters, including pedestrian time-to-arrival and driver response time, were calculated to describe the driver response process and define driver comfort boundaries.Linear mixed-effect models showed that driver responses depended mainly on pedestrian time-to-arrival and visibility, whereas factors such as pedestrian size, zebra-crossing presence, and lane width did not significantly influence the driver response process. Some drivers changed their negotiation strategy (proportion of pedal braking to engine braking) to minimize driving effort over the course of the experiment. Experienced drivers changed more than less experienced drivers; nevertheless, all drivers behaved similarly, independent of driving experience. The flexible and customizable driving environment provided by OpenDS may be a viable platform for behavioural experiments in driving simulators.Results from this study suggest that visibility and pedestrian time-to-arrival are the most important variables for defining the earliest acceptable FCW and AEB activations. Fractional factorial design effectively compared the influence of several factors on driver behaviour within a single experiment; however, this design did not allow in-depth data analysis. In the future, OpenDS might become a standard platform, enabling crowdsourcing and favouring repeatability across studies in traffic safety. Finally, this study advises future design and evaluation procedures (e.g. new car assessment programs) for FCW and AEB by highlighting which factors deserve further investigation and which ones do not

    Performance and Safety Enhancement Strategies in Vehicle Dynamics and Ground Contact

    Get PDF
    Recent trends in vehicle engineering are testament to the great efforts that scientists and industries have made to seek solutions to enhance both the performance and safety of vehicular systems. This Special Issue aims to contribute to the study of modern vehicle dynamics, attracting recent experimental and in-simulation advances that are the basis for current technological growth and future mobility. The area involves research, studies, and projects derived from vehicle dynamics that aim to enhance vehicle performance in terms of handling, comfort, and adherence, and to examine safety optimization in the emerging contexts of smart, connected, and autonomous driving.This Special Issue focuses on new findings in the following topics:(1) Experimental and modelling activities that aim to investigate interaction phenomena from the macroscale, analyzing vehicle data, to the microscale, accounting for local contact mechanics; (2) Control strategies focused on vehicle performance enhancement, in terms of handling/grip, comfort and safety for passengers, motorsports, and future mobility scenarios; (3) Innovative technologies to improve the safety and performance of the vehicle and its subsystems; (4) Identification of vehicle and tire/wheel model parameters and status with innovative methodologies and algorithms; (5) Implementation of real-time software, logics, and models in onboard architectures and driving simulators; (6) Studies and analyses oriented toward the correlation among the factors affecting vehicle performance and safety; (7) Application use cases in road and off-road vehicles, e-bikes, motorcycles, buses, trucks, etc

    Advances in Automated Driving Systems

    Get PDF
    Electrification, automation of vehicle control, digitalization and new mobility are the mega-trends in automotive engineering, and they are strongly connected. While many demonstrations for highly automated vehicles have been made worldwide, many challenges remain in bringing automated vehicles to the market for private and commercial use. The main challenges are as follows: reliable machine perception; accepted standards for vehicle-type approval and homologation; verification and validation of the functional safety, especially at SAE level 3+ systems; legal and ethical implications; acceptance of vehicle automation by occupants and society; interaction between automated and human-controlled vehicles in mixed traffic; human–machine interaction and usability; manipulation, misuse and cyber-security; the system costs of hard- and software and development efforts. This Special Issue was prepared in the years 2021 and 2022 and includes 15 papers with original research related to recent advances in the aforementioned challenges. The topics of this Special Issue cover: Machine perception for SAE L3+ driving automation; Trajectory planning and decision-making in complex traffic situations; X-by-Wire system components; Verification and validation of SAE L3+ systems; Misuse, manipulation and cybersecurity; Human–machine interactions, driver monitoring and driver-intention recognition; Road infrastructure measures for the introduction of SAE L3+ systems; Solutions for interactions between human- and machine-controlled vehicles in mixed traffic

    Orbital operation study. Volume 3: Basic vehicle summaries

    Get PDF
    The vehicle related data developed during the orbital operations study are described. The interfacing activity findings have been realigned into the four basic vehicle systems as follows: (1) earth orbital shuttle (EOS), (2) research and applications module (RAM), (3) space based, ground based, manned and unmanned tugs, and (4) modular space station (MSS)

    Exploring personalised autonomous vehicles to influence user trust

    Get PDF
    Trust is a major determinant of acceptance of an autonomous vehicle (AV), and a lack of appropriate trust could prevent drivers and society in general from taking advantage of such technology. This paper makes a new attempt to explore the effects of personalised AVs as a novel approach to the cognitive underpinnings of drivers’ trust in AVs. The personalised AV system is able to identify the driving behaviours of users and thus adapt the driving style of the AV accordingly. A prototype of a personalised AV was designed and evaluated in a lab-based experimental study of 36 human drivers, which investigated the impact of the personalised AV on user trust when compared with manual human driving and non-personalised AVs. The findings show that a personalised AV appears to be significantly more reliable through accepting and understanding each driver’s behaviour, which could thereby increase a user’s willingness to trust the system. Furthermore, a personalised AV brings a sense of familiarity by making the system more recognisable and easier for users to estimate the quality of the automated system. Personalisation parameters were also explored and discussed to support the design of AV systems to be more socially acceptable and trustworthy

    Cooperative Traffic Control Solution for Vehicle Transition from Autonomous to Manual Mode exploiting Cellular Vehicle-to-Everything (C-V2X) Technology

    Get PDF
    Nowadays, automated vehicles represent a promising technology to face the stringent requirements for safety and traffic efficiency in the automotive environment. Driving responsibilities will be gradually addressed to the machine, and the role of human pilots will be progressively reduced to passengers. The interaction between passengers and the automated system will create different risks that have not been considered in the past. In particular, the transition between autonomous and manual mode is understood as a risky situation. During the transition, the driver manifests driving irregularities and loss of situation awareness that may endanger himself and other participants on the road. Hence, the vehicle transitioning needs a higher quantity of space around it to be considered safe. However, no effective solution has been developed yet. This thesis aims to design a cooperative traffic control solution that will manage the movements of the group of vehicles to increase the free space around the one transitioning. It will exploit another tool that will play a fundamental role in the future of the automotive industry: connected vehicles technology. C-V2X technology will create a medium for vehicles to exchange information and cooperate. A controller managing the cooperation between vehicles has been developed to help a smooth and safe vehicle repositioning. The controller will be positioned in a centralized computing facility and it will communicate with all the vehicles. The controller defines rules to move vehicles together and enlarge the free space around the vehicle transitioning without collisions. The rules are modeled by a spring-mass-damper system, that can be exploited to control the longitudinal behavior of automated vehicles. In particular, the spring-mass-damper system can manage smooth migration between vehicle dispositions without oscillations. A computer simulation is used to test the performance of the proposed traffic control system. The simulation environment is constituted by three main components: traffic flow, controller and communication network. It has been tested with the software VEINS, which provides interaction between a network simulator (OMNeT++) and a traffic simulator (SUMO). The traffic flow represents the interactions between vehicles. The controller analyzes the data and sends control messages to all vehicles. The communication network will share the data concerning vehicles’ position and speed and control messages. The proposed cooperative vehicle control system demonstrated to reduce the risks of the transition with the smooth motion of vehicles. The controller is able to achieve the safety requirements without reducing the level of comfortability of vehicles’ passengers
    • …
    corecore