4,309 research outputs found

    Improving the Decision-Making Process of Self-Adaptive Systems by Accounting for Tactic Volatility

    Full text link
    When self-adaptive systems encounter changes within their surrounding environments, they enact tactics to perform necessary adaptations. For example, a self-adaptive cloud-based system may have a tactic that initiates additional computing resources when response time thresholds are surpassed, or there may be a tactic to activate a specific security measure when an intrusion is detected. In real-world environments, these tactics frequently experience tactic volatility which is variable behavior during the execution of the tactic. Unfortunately, current self-adaptive approaches do not account for tactic volatility in their decision-making processes, and merely assume that tactics do not experience volatility. This limitation creates uncertainty in the decision-making process and may adversely impact the system's ability to effectively and efficiently adapt. Additionally, many processes do not properly account for volatility that may effect the system's Service Level Agreement (SLA). This can limit the system's ability to act proactively, especially when utilizing tactics that contain latency. To address the challenge of sufficiently accounting for tactic volatility, we propose a Tactic Volatility Aware (TVA) solution. Using Multiple Regression Analysis (MRA), TVA enables self-adaptive systems to accurately estimate the cost and time required to execute tactics. TVA also utilizes Autoregressive Integrated Moving Average (ARIMA) for time series forecasting, allowing the system to proactively maintain specifications

    Evaluation of Neuro-Evolution Algorithms for Tactic Volatility Aware Processes

    Get PDF
    Our society is increasingly evolving to rely on computer mechanisms that perform a variety of tasks. From a self-driving car to a satellite in space relaying data from Mars rovers, we need these systems to perform optimally and without failure. One such point of failure these systems can encounter is tactic volatility of an adaptation tactic. Adaptation tactics are defined workflows that allow systems to navigate their environment. Tactic volatility is the variance in the behavior in the attribute of a tactic, such as cost and latency and/or the combination of the two. Current systems consider these tactic attributes to be static. Studies have shown that not accounting for tactic volatility can adversely affect a system\u27s ability to operate effectively and resiliently. To support self-adaptive systems and address their limitations, this paper proposes a Tactic Volatility Aware solution that utilizes eRNN (TVA-E) and addresses the limitations of current self-adaptive systems. For this research, we used real-world data that has been made available for use by researchers and academics. This data contains real-world volatility and helps us demonstrate the positive impact TVA-E when used in self-adaptive systems. We also employ the use of uncertainty reduction tactics and how they can assist in accounting for tactic volatility. This work will serve as an evaluation and a comparison of using different machine learning methods to predict and account for tactic volatility. We will study different predictive mechanisms in this paper: Auto-Regressive Moving Average(ARIMA), Evolving Recurrent Neural Network(eRNN), Multi-Layer Perceptron(MLP), and Support Vector Regression(SVR). These methods will be studied with our TVA-E process and we will analyze how they can enhance a self-adaptive system’s performance when it accounts for tactic volatility

    TVA: A Requirements Driven, Machine-Learning Approach for Addressing Tactic Volatility in Self-Adaptive Systems

    Get PDF
    From self-driving cars to self-adaptive websites, the world is increasingly becoming more reliant on autonomous systems. Similar to many other domains, the system\u27s behavior is often determined by its requirements. For example, a self-adaptive web service is likely to have some maximum value that response time should not surpass. To maintain this requirement, the system uses tactics, which may include activating additional computing resources. In real-world environments, tactics will frequently experience volatility, known as tactic volatility. This can include unstable time required to execute the tactic or frequent fluctuations in the cost to execute the tactic. Unfortunately, current self-adaptive approaches do not account for tactic volatility in their decision-making processes, and merely assume that tactics have static attributes. To address the limitations in current processes, we propose a Tactic Volatility Aware (TVA) solution. Our approach focuses on providing a volatility aware solution that enables the system to properly maintain requirements. Specifically, TVA utilizes a Autoregressive Integrated Moving Average Model (ARIMA) to estimate potential future values for requirements, while also using a Multiple Regression Analysis (MRA) model to make predictions of tactic latency and tactic cost at runtime. This enables the system to both better estimate the true behavior of its tactics and it allows the system to properly maintain its requirements. Using data containing real-world volatility, we demonstrate the effectiveness of using TVA with both statistical analysis methods and self-adaptive experiments. In this work, we demonstrate (I) The negative impact of not accounting for tactic volatility (II) The benefits of a ARIMA-modeling approach in monitoring system requirements (III) The effectiveness of MRA in predicting tactic volatility (IV) The overall benefits of TVA to the self-adaptive process. This work also presents the first known publicly available dataset of real-world tactic volatility in terms of both cost and latency

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    Temporal Models for History-Aware Explainability

    Get PDF
    On one hand, there has been a growing interest towards the application of AI-based learning and evolutionary programming for self-adaptation under uncertainty. On the other hand, self-explanation is one of the self-* properties that has been neglected. This is paradoxical as self-explanation is inevitably needed when using such techniques. In this paper, we argue that a self-adaptive autonomous system (SAS) needs an infrastructure and capabilities to be able to look at its own history to explain and reason why the system has reached its current state. The infrastructure and capabilities need to be built based on the right conceptual models in such a way that the system's history can be stored, queried to be used in the context of the decision-making algorithms. The explanation capabilities are framed in four incremental levels, from forensic self-explanation to automated history-aware (HA) systems. Incremental capabilities imply that capabilities at Level n should be available for capabilities at Level n + 1. We demonstrate our current reassuring results related to Level 1 and Level 2, using temporal graph-based models. Specifically, we explain how Level 1 supports forensic accounting after the system's execution. We also present how to enable on-line historical analyses while the self-adaptive system is running, underpinned by the capabilities provided by Level 2. An architecture which allows recording of temporal data that can be queried to explain behaviour has been presented, and the overheads that would be imposed by live analysis are discussed. Future research opportunities are envisioned
    • …
    corecore