36 research outputs found

    KSPHPDDM and PCHPDDM: Extending PETSc with advanced Krylov methods and robust multilevel overlapping Schwarz preconditioners

    Full text link
    [EN] Contemporary applications in computational science and engineering often require the solution of linear systems which may be of different sizes, shapes, and structures. The goal of this paper is to explain how two libraries, PETSc and HPDDM, have been interfaced in order to offer end-users robust overlapping Schwarz preconditioners and advanced Krylov methods featuring recycling and the ability to deal with multiple right-hand sides. The flexibility of the implementation is showcased and explained with minimalist, easy-to-run, and reproducible examples, to ease the integration of these algorithms into more advanced frameworks. The examples provided cover applications from eigenanalysis, elasticity, combustion, and electromagnetism.Jose E. Roman was supported by the Spanish Agencia Estatal de Investigacion (AEI) under project SLEPc-DA (PID2019-107379RB-I00)Jolivet, P.; Roman, JE.; Zampini, S. (2021). KSPHPDDM and PCHPDDM: Extending PETSc with advanced Krylov methods and robust multilevel overlapping Schwarz preconditioners. Computers & Mathematics with Applications. 84:277-295. https://doi.org/10.1016/j.camwa.2021.01.0032772958

    Contribution to the study of efficient iterative methods for the numerical solution of partial differential equations

    Get PDF
    Multigrid and domain decomposition methods provide efficient algorithms for the numerical solution of partial differential equations arising in the modelling of many applications in Computational Science and Engineering. This manuscript covers certain aspects of modern iterative solution methods for the solution of large-scale problems issued from the discretization of partial differential equations. More specifically, we focus on geometric multigrid methods, non-overlapping substructuring methods and flexible Krylov subspace methods with a particular emphasis on their combination. Firstly, the combination of multigrid and Krylov subspace methods is investigated on a linear partial differential equation modelling wave propagation in heterogeneous media. Secondly, we focus on non-overlapping domain decomposition methods for a specific finite element discretization known as the hp finite element, where unrefinement/refinement is allowed both by decreasing/increasing the step size h or by decreasing/increasing the polynomial degree p of the approximation on each element. Results on condition number bounds for the domain decomposition preconditioned operators are given and illustrated by numerical results on academic problems in two and three dimensions. Thirdly, we review recent advances related to a class of Krylov subspace methods allowing variable preconditioning. We examine in detail flexible Krylov subspace methods including augmentation and/or spectral deflation, where deflation aims at capturing approximate invariant subspace information. We also present flexible Krylov subspace methods for the solution of linear systems with multiple right-hand sides given simultaneously. The efficiency of the numerical methods is demonstrated on challenging applications in seismics requiring the solution of huge linear systems of equations with multiple right-hand sides on parallel distributed memory computers. Finally, we expose current and future prospectives towards the design of efficient algorithms on extreme scale machines for the solution of problems coming from the discretization of partial differential equations

    A perturbed two-level preconditioner for the solution of three-dimensional heterogeneous Helmholtz problems with applications to geophysics

    Get PDF
    Le sujet de cette thèse est le développement de méthodes itératives permettant la résolution de grands systèmes linéaires creux d'équations présentant plusieurs seconds membres simultanément. Ces méthodes seront en particulier utilisées dans le cadre d'une application géophysique : la migration sismique visant à simuler la propagation d'ondes sous la surface de la terre. Le problème prend la forme d'une équation d'Helmholtz dans le domaine fréquentiel en trois dimensions, discrétisée par des différences finies et donnant lieu à un système linéaire creux, complexe, non-symétrique, non-hermitien. De plus, lorsque de grands nombres d'onde sont considérés, cette matrice possède une taille élevée et est indéfinie. Du fait de ces propriétés, nous nous proposons d'étudier des méthodes de Krylov préconditionnées par des techniques hiérarchiques deux niveaux. Un tel pre-conditionnement s'est montré particulièrement efficace en deux dimensions et le but de cette thèse est de relever le défi de l'adapter au cas tridimensionel. Pour ce faire, des méthodes de Krylov sont utilisées à la fois comme lisseur et comme méthode de résolution du problème grossier. Ces derniers choix induisent l'emploi de méthodes de Krylov dites flexibles. ABSTRACT : The topic of this PhD thesis is the development of iterative methods for the solution of large sparse linear systems of equations with possibly multiple right-hand sides given at once. These methods will be used for a specific application in geophysics - seismic migration - related to the simulation of wave propagation in the subsurface of the Earth. Here the three-dimensional Helmholtz equation written in the frequency domain is considered. The finite difference discretization of the Helmholtz equation with the Perfect Matched Layer formulation produces, when high frequencies are considered, a complex linear system which is large, non-symmetric, non-Hermitian, indefinite and sparse. Thus we propose to study preconditioned flexible Krylov subspace methods, especially minimum residual norm methods, to solve this class of problems. As a preconditioner we consider multi-level techniques and especially focus on a two-level method. This twolevel preconditioner has shown efficient for two-dimensional applications and the purpose of this thesis is to extend this to the challenging three-dimensional case. This leads us to propose and analyze a perturbed two-level preconditioner for a flexible Krylov subspace method, where Krylov methods are used both as smoother and as approximate coarse grid solver

    A study on block flexible iterative solvers with applications to Earth imaging problem in geophysics

    Get PDF
    Les travaux de ce doctorat concernent le développement de méthodes itératives pour la résolution de systèmes linéaires creux de grande taille comportant de nombreux seconds membres. L’application visée est la résolution d’un problème inverse en géophysique visant à reconstruire la vitesse de propagation des ondes dans le sous-sol terrestre. Lorsque de nombreuses sources émettrices sont utilisées, ce problème inverse nécessite la résolution de systèmes linéaires complexes non symétriques non hermitiens comportant des milliers de seconds membres. Dans le cas tridimensionnel ces systèmes linéaires sont reconnus comme difficiles à résoudre plus particulièrement lorsque des fréquences élevées sont considérées. Le principal objectif de cette thèse est donc d’étendre les développements existants concernant les méthodes de Krylov par bloc. Nous étudions plus particulièrement les techniques de déflation dans le cas multiples seconds membres et recyclage de sous-espace dans le cas simple second membre. Des gains substantiels sont obtenus en terme de temps de calcul par rapport aux méthodes existantes sur des applications réalistes dans un environnement parallèle distribué. ABSTRACT : This PhD thesis concerns the development of flexible Krylov subspace iterative solvers for the solution of large sparse linear systems of equations with multiple right-hand sides. Our target application is the solution of the acoustic full waveform inversion problem in geophysics associated with the phenomena of wave propagation through an heterogeneous model simulating the subsurface of Earth. When multiple wave sources are being used, this problem gives raise to large sparse complex non-Hermitian and nonsymmetric linear systems with thousands of right-hand sides. Specially in the three-dimensional case and at high frequencies, this problem is known to be difficult. The purpose of this thesis is to develop a flexible block Krylov iterative method which extends and improves techniques already available in the current literature to the multiple right-hand sides scenario. We exploit the relations between each right-hand side to accelerate the convergence of the overall iterative method. We study both block deflation and single right-hand side subspace recycling techniques obtaining substantial gains in terms of computational time when compared to other strategies published in the literature, on realistic applications performed in a parallel environment

    Block GMRES method with inexact breakdowns and deflated restarting

    Get PDF
    International audienc

    A Parallel Geometric Multigrid Method for Adaptive Finite Elements

    Get PDF
    Applications in a variety of scientific disciplines use systems of Partial Differential Equations (PDEs) to model physical phenomena. Numerical solutions to these models are often found using the Finite Element Method (FEM), where the problem is discretized and the solution of a large linear system is required, containing millions or even billions of unknowns. Often times, the domain of these solves will contain localized features that require very high resolution of the underlying finite element mesh to accurately solve, while a mesh with uniform resolution would require far too much computational time and memory overhead to be feasible on a modern machine. Therefore, techniques like adaptive mesh refinement, where one increases the resolution of the mesh only where it is necessary, must be used. Even with adaptive mesh refinement, these systems can still be on the order of much more than a million unknowns (large mantle convection applications like the ones in [90] show simulations on over 600 billion unknowns), and attempting to solve on a single processing unit is infeasible due to limited computational time and memory required. For this reason, any application code aimed at solving large problems must be built using a parallel framework, allowing the concurrent use of multiple processing units to solve a single problem, and the code must exhibit efficient scaling to large amounts of processing units. Multigrid methods are currently the only known optimal solvers for linear systems arising from discretizations of elliptic boundary valued problems. These methods can be represented as an iterative scheme with contraction number less than one, independent of the resolution of the discretization [24, 54, 25, 103], with optimal complexity in the number of unknowns in the system [29]. Geometric multigrid (GMG) methods, where the hierarchy of spaces are defined by linear systems of finite element discretizations on meshes of decreasing resolution, have been shown to be robust for many different problem formulations, giving mesh independent convergence for highly adaptive meshes [26, 61, 83, 18], but these methods require specific implementations for each type of equation, boundary condition, mesh, etc., required by the specific application. The implementation in a massively parallel environment is not obvious, and research into this topic is far from exhaustive. We present an implementation of a massively parallel, adaptive geometric multigrid (GMG) method used in the open-source finite element library deal.II [5], and perform extensive tests showing scaling of the v-cycle application on systems with up to 137 billion unknowns run on up to 65,536 processors, and demonstrating low communication overhead of the algorithms proposed. We then show the flexibility of the GMG by applying the method to four different PDE systems: the Poisson equation, linear elasticity, advection-diffusion, and the Stokes equations. For the Stokes equations, we implement a fully matrix-free, adaptive, GMG-based solver in the mantle convection code ASPECT [13], and give a comparison to the current matrix-based method used. We show improvements in robustness, parallel scaling, and memory consumption for simulations with up to 27 billion unknowns and 114,688 processors. Finally, we test the performance of IDR(s) methods compared to the FGMRES method currently used in ASPECT, showing the effects of the flexible preconditioning used for the Stokes solves in ASPECT, and the demonstrating the possible reduction in memory consumption for IDR(s) and the potential for solving large scale problems. Parts of the work in this thesis has been submitted to peer reviewed journals in the form of two publications ([36] and [34]), and the implementations discussed have been integrated into two open-source codes, deal.II and ASPECT. From the contributions to deal.II, including a full length tutorial program, Step-63 [35], the author is listed as a contributing author to the newest deal.II release (see [5]). The implementation into ASPECT is based on work from the author and Timo Heister. The goal for the work here is to enable the community of geoscientists using ASPECT to solve larger problems than currently possible. Over the course of this thesis, the author was partially funded by the NSF Award OAC-1835452 and by the Computational Infrastructure in Geodynamics initiative (CIG), through the NSF under Award EAR-0949446 and EAR-1550901 and The University of California -- Davis

    On the parallel scalability of hybrid linear solvers for large 3D problems

    Get PDF
    Large-scale scientific applications and industrial simulations are nowadays fully integrated in many engineering areas. They involve the solution of large sparse linear systems. The use of large high performance computers is mandatory to solve these problems. The main topic of this research work was the study of a numerical technique that had attractive features for an efficient solution of large scale linear systems on large massively parallel platforms. The goal is to develop a high performance hybrid direct/iterative approach for solving large 3D problems. We focus specifically on the associated domain decomposition techniques for the parallel solution of large linear systems. We have investigated several algebraic preconditioning techniques, discussed their numerical behaviours, their parallel implementations and scalabilities. We have compared their performances on a set of 3D grand challenge problems

    Three-dimensional forward modelling and inversion for the CSAMT method using unstructured grids

    Get PDF
    Three-dimensional forward-modelling and inversion problems are investigated for the controlled-source audio-frequency magnetotelluric (CSAMT) method and both forward-modelling and inversion codes written. The finite-element (FE) method, which is a numerical method for obtaining approximate solutions to boundary-value problems, is used for forward modelling. A potential formulation, specifically the decomposition of the electric field into vector and scalar potentials for the Helmholtz and the conservation of charge equations, is used. Vector and scalar basis functions are used for the potentials. The equations are discretized using the weighted residual method, which results in a sparse linear system. Modelling domains are subdivided into unstructured tetrahedral grids. The linear system is solved by the direct solver, MUMPS, with LU factorization. A number of examples are presented for the validation of the code. A minimum-structure method with Gauss-Newton iterations is used for the inversion. Iterative preconditioned conjugate gradient and nonpreconditioned generalized minimal residual methods are used to solve the linear systems of equations for the model updates. These solvers do not request explicit calculations of the matrices; therefore, this significantly reduces memory demand. Three benchmark tests are presented to verify the inversion code
    corecore