1,283 research outputs found

    Flexible Structural Neighborhood—a database of protein structural similarities and alignments

    Get PDF
    Protein structures are flexible, changing their shapes not only upon substrate binding, but also during evolution as a collective effect of mutations, deletions and insertions. A new generation of protein structure comparison algorithms allows for such flexibility; they go beyond identifying the largest common part between two proteins and find hinge regions and patterns of flexibility in protein families. Here we present a Flexible Structural Neighborhood (FSN), a database of structural neighbors of proteins deposited in PDB as seen by a flexible protein structure alignment program FATCAT, developed previously in our group. The database, searchable by a protein PDB code, provides lists of proteins with statistically significant structural similarity and on lower menu levels provides detailed alignments, interactive superposition of structures and positions of hinges that were identified in the comparison. While superficially similar to other structural protein alignment resources, FSN provides a unique resource to study not only protein structural similarity, but also how protein structures change. FSN is available from a server and by direct links from the PDB database

    A novel method to compare protein structures using local descriptors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein structure comparison is one of the most widely performed tasks in bioinformatics. However, currently used methods have problems with the so-called "difficult similarities", including considerable shifts and distortions of structure, sequential swaps and circular permutations. There is a demand for efficient and automated systems capable of overcoming these difficulties, which may lead to the discovery of previously unknown structural relationships.</p> <p>Results</p> <p>We present a novel method for protein structure comparison based on the formalism of local descriptors of protein structure - DEscriptor Defined Alignment (DEDAL). Local similarities identified by pairs of similar descriptors are extended into global structural alignments. We demonstrate the method's capability by aligning structures in difficult benchmark sets: curated alignments in the SISYPHUS database, as well as SISY and RIPC sets, including non-sequential and non-rigid-body alignments. On the most difficult RIPC set of sequence alignment pairs the method achieves an accuracy of 77% (the second best method tested achieves 60% accuracy).</p> <p>Conclusions</p> <p>DEDAL is fast enough to be used in whole proteome applications, and by lowering the threshold of detectable structure similarity it may shed additional light on molecular evolution processes. It is well suited to improving automatic classification of structure domains, helping analyze protein fold space, or to improving protein classification schemes. DEDAL is available online at <url>http://bioexploratorium.pl/EP/DEDAL</url>.</p

    Two Pfam protein families characterized by a crystal structure of protein lpg2210 from Legionella pneumophila.

    Get PDF
    BackgroundEvery genome contains a large number of uncharacterized proteins that may encode entirely novel biological systems. Many of these uncharacterized proteins fall into related sequence families. By applying sequence and structural analysis we hope to provide insight into novel biology.ResultsWe analyze a previously uncharacterized Pfam protein family called DUF4424 [Pfam:PF14415]. The recently solved three-dimensional structure of the protein lpg2210 from Legionella pneumophila provides the first structural information pertaining to this family. This protein additionally includes the first representative structure of another Pfam family called the YARHG domain [Pfam:PF13308]. The Pfam family DUF4424 adopts a 19-stranded beta-sandwich fold that shows similarity to the N-terminal domain of leukotriene A-4 hydrolase. The YARHG domain forms an all-helical domain at the C-terminus. Structure analysis allows us to recognize distant similarities between the DUF4424 domain and individual domains of M1 aminopeptidases and tricorn proteases, which form massive proteasome-like capsids in both archaea and bacteria.ConclusionsBased on our analyses we hypothesize that the DUF4424 domain may have a role in forming large, multi-component enzyme complexes. We suggest that the YARGH domain may play a role in binding a moiety in proximity with peptidoglycan, such as a hydrophobic outer membrane lipid or lipopolysaccharide

    Projections for fast protein structure retrieval

    Get PDF
    BACKGROUND: In recent times, there has been an exponential rise in the number of protein structures in databases e.g. PDB. So, design of fast algorithms capable of querying such databases is becoming an increasingly important research issue. This paper reports an algorithm, motivated from spectral graph matching techniques, for retrieving protein structures similar to a query structure from a large protein structure database. Each protein structure is specified by the 3D coordinates of residues of the protein. The algorithm is based on a novel characterization of the residues, called projections, leading to a similarity measure between the residues of the two proteins. This measure is exploited to efficiently compute the optimal equivalences. RESULTS: Experimental results show that, the current algorithm outperforms the state of the art on benchmark datasets in terms of speed without losing accuracy. Search results on SCOP 95% nonredundant database, for fold similarity with 5 proteins from different SCOP classes show that the current method performs competitively with the standard algorithm CE. The algorithm is also capable of detecting non-topological similarities between two proteins which is not possible with most of the state of the art tools like Dali

    Detecting Remote Evolutionary Relationships among Proteins by Large-Scale Semantic Embedding

    Get PDF
    Virtually every molecular biologist has searched a protein or DNA sequence database to find sequences that are evolutionarily related to a given query. Pairwise sequence comparison methods—i.e., measures of similarity between query and target sequences—provide the engine for sequence database search and have been the subject of 30 years of computational research. For the difficult problem of detecting remote evolutionary relationships between protein sequences, the most successful pairwise comparison methods involve building local models (e.g., profile hidden Markov models) of protein sequences. However, recent work in massive data domains like web search and natural language processing demonstrate the advantage of exploiting the global structure of the data space. Motivated by this work, we present a large-scale algorithm called ProtEmbed, which learns an embedding of protein sequences into a low-dimensional “semantic space.” Evolutionarily related proteins are embedded in close proximity, and additional pieces of evidence, such as 3D structural similarity or class labels, can be incorporated into the learning process. We find that ProtEmbed achieves superior accuracy to widely used pairwise sequence methods like PSI-BLAST and HHSearch for remote homology detection; it also outperforms our previous RankProp algorithm, which incorporates global structure in the form of a protein similarity network. Finally, the ProtEmbed embedding space can be visualized, both at the global level and local to a given query, yielding intuition about the structure of protein sequence space

    Graph-Based Approaches to Protein StructureComparison - From Local to Global Similarity

    Get PDF
    The comparative analysis of protein structure data is a central aspect of structural bioinformatics. Drawing upon structural information allows the inference of function for unknown proteins even in cases where no apparent homology can be found on the sequence level. Regarding the function of an enzyme, the overall fold topology might less important than the specific structural conformation of the catalytic site or the surface region of a protein, where the interaction with other molecules, such as binding partners, substrates and ligands occurs. Thus, a comparison of these regions is especially interesting for functional inference, since structural constraints imposed by the demands of the catalyzed biochemical function make them more likely to exhibit structural similarity. Moreover, the comparative analysis of protein binding sites is of special interest in pharmaceutical chemistry, in order to predict cross-reactivities and gain a deeper understanding of the catalysis mechanism. From an algorithmic point of view, the comparison of structured data, or, more generally, complex objects, can be attempted based on different methodological principles. Global methods aim at comparing structures as a whole, while local methods transfer the problem to multiple comparisons of local substructures. In the context of protein structure analysis, it is not a priori clear, which strategy is more suitable. In this thesis, several conceptually different algorithmic approaches have been developed, based on local, global and semi-global strategies, for the task of comparing protein structure data, more specifically protein binding pockets. The use of graphs for the modeling of protein structure data has a long standing tradition in structural bioinformatics. Recently, graphs have been used to model the geometric constraints of protein binding sites. The algorithms developed in this thesis are based on this modeling concept, hence, from a computer scientist's point of view, they can also be regarded as global, local and semi-global approaches to graph comparison. The developed algorithms were mainly designed on the premise to allow for a more approximate comparison of protein binding sites, in order to account for the molecular flexibility of the protein structures. A main motivation was to allow for the detection of more remote similarities, which are not apparent by using more rigid methods. Subsequently, the developed approaches were applied to different problems typically encountered in the field of structural bioinformatics in order to assess and compare their performance and suitability for different problems. Each of the approaches developed during this work was capable of improving upon the performance of existing methods in the field. Another major aspect in the experiments was the question, which methodological concept, local, global or a combination of both, offers the most benefits for the specific task of protein binding site comparison, a question that is addressed throughout this thesis

    Detailed protein sequence alignment based on Spectral Similarity Score (SSS)

    Get PDF
    BACKGROUND: The chemical property and biological function of a protein is a direct consequence of its primary structure. Several algorithms have been developed which determine alignment and similarity of primary protein sequences. However, character based similarity cannot provide insight into the structural aspects of a protein. We present a method based on spectral similarity to compare subsequences of amino acids that behave similarly but are not aligned well by considering amino acids as mere characters. This approach finds a similarity score between sequences based on any given attribute, like hydrophobicity of amino acids, on the basis of spectral information after partial conversion to the frequency domain. RESULTS: Distance matrices of various branches of the human kinome, that is the full complement of human kinases, were developed that matched the phylogenetic tree of the human kinome establishing the efficacy of the global alignment of the algorithm. PKCd and PKCe kinases share close biological properties and structural similarities but do not give high scores with character based alignments. Detailed comparison established close similarities between subsequences that do not have any significant character identity. We compared their known 3D structures to establish that the algorithm is able to pick subsequences that are not considered similar by character based matching algorithms but share structural similarities. Similarly many subsequences with low character identity were picked between xyna-theau and xyna-clotm F/10 xylanases. Comparison of 3D structures of the subsequences confirmed the claim of similarity in structure. CONCLUSION: An algorithm is developed which is inspired by successful application of spectral similarity applied to music sequences. The method captures subsequences that do not align by traditional character based alignment tools but give rise to similar secondary and tertiary structures. The Spectral Similarity Score (SSS) is an extension to the conventional similarity methods and results indicate that it holds a strong potential for analysis of various biological sequences and structural variations in proteins
    corecore