158 research outputs found

    A look at cloud architecture interoperability through standards

    Get PDF
    Enabling cloud infrastructures to evolve into a transparent platform while preserving integrity raises interoperability issues. How components are connected needs to be addressed. Interoperability requires standard data models and communication encoding technologies compatible with the existing Internet infrastructure. To reduce vendor lock-in situations, cloud computing must implement universal strategies regarding standards, interoperability and portability. Open standards are of critical importance and need to be embedded into interoperability solutions. Interoperability is determined at the data level as well as the service level. Corresponding modelling standards and integration solutions shall be analysed

    Interoperability standards for cloud architecture

    Get PDF
    Enabling cloud infrastructures to evolve into a transparent platform raises interoperability issues. Interoperability requires standard data models and communication technologies compatible with the existing Internet infrastructure. To reduce vendor lock-in situations, cloud computing must implement common strategies regarding standards, interoperability and portability. Open standards are of critical importance and need to be embedded into interoperability solutions. Interoperability is determined at the data level as well as the service level. Relevant modelling standards and integration solutions shall be analysed in the context of clouds

    Programming distributed and adaptable autonomous components--the GCM/ProActive framework

    Get PDF
    International audienceComponent-oriented software has become a useful tool to build larger and more complex systems by describing the application in terms of encapsulated, loosely coupled entities called components. At the same time, asynchronous programming patterns allow for the development of efficient distributed applications. While several component models and frameworks have been proposed, most of them tightly integrate the component model with the middleware they run upon. This intertwining is generally implicit and not discussed, leading to entangled, hard to maintain code. This article describes our efforts in the development of the GCM/ProActive framework for providing distributed and adaptable autonomous components. GCM/ProActive integrates a component model designed for execution on large-scale environments, with a programming model based on active objects allowing a high degree of distribution and concurrency. This new integrated model provides a more powerful development, composition, and execution environment than other distributed component frameworks. We illustrate that GCM/ProActive is particularly adapted to the programming of autonomic component systems, and to the integration into a service-oriented environment

    A service oriented architecture to implement clinical guidelines for evidence-based medical practice

    Get PDF
    Health information technology (HIT) has been identified as the fundamental driver to streamline the healthcare delivery processes to improve care quality and reduce operational costs. Of the many facets of HIT is Clinical Decision Support (CDS) which provides the physician with patient-specific inferences, intelligently filtered and organized, at appropriate times. This research has been conducted to develop an agile solution to Clinical Decision Support at the point of care in a healthcare setting as a potential solution to the challenges of interoperability and the complexity of possible solutions. The capabilities of Business Process Management (BPM) and Workflow Management systems are leveraged to support a Service Oriented Architecture development approach for ensuring evidence based medical practice. The aim of this study is to present an architecture solution that is based on SOA principles and embeds clinical guidelines within a healthcare setting. Since the solution is designed to implement real life healthcare scenarios, it essentially supports evidence-based clinical guidelines that are liable to change over a period of time. The thesis is divided into four parts. The first part consists of an Introduction to the study and a background to existing approaches for development and integration of Clinical Decision Support Systems. The second part focuses on the development of a Clinical Decision Support Framework based on Service Oriented Architecture. The CDS Framework is composed of standards based open source technologies including JBoss SwitchYard (enterprise service bus), rule-based CDS enabled by JBoss Drools, process modelling using Business Process Modelling and Notation. To ensure interoperability among various components, healthcare standards by HL7 and OMG are implemented. The third part provides implementation of this CDS Framework in healthcare scenarios. Two scenarios are concerned with the medical practice for diagnosis and early intervention (Chronic Obstructive Pulmonary Disease and Lung Cancer), one case study for Genetic data enablement of CDS systems (New born screening for Cystic Fibrosis) and the last case study is about using BPM techniques for managing healthcare organizational perspectives including human interaction with automated clinical workflows. The last part concludes the research with contributions in design and architecture of CDS systems. This thesis has primarily adopted the Design Science Research Methodology for Information Systems. Additionally, Business Process Management Life Cycle, Agile Business Rules Development methodology and Pattern-Based Cycle for E-Workflow Design for individual case studies are used. Using evidence-based clinical guidelines published by UK’s National Institute of Health and Care Excellence, the integration of latest research in clinical practice has been employed in the automated workflows. The case studies implemented using the CDS Framework are evaluated against implementation requirements, conformance to SOA principles and response time using load testing strategy. For a healthcare organization to achieve its strategic goals in administrative and clinical practice, this research has provided a standards based integration solution in the field of clinical decision support. A SOA based CDS can serve as a potential solution to complexities in IT interventions as the core data and business logic functions are loosely coupled from the presentation. Additionally, the results of this this research can serve as an exemplar for other industrial domains requiring rapid response to evolving business processes

    Service Development Life Cycle for Hybrid Cloud Environments

    Full text link
    With increasing adoption of cloud computing there is a need to provide methodological and tool support for the development of enterprise applications that utilize cloud services. Traditional approaches that assume that services are developed and deployed on-premise are not suitable for hybrid cloud environments, where a significant part of enterprise applications is delivered in the form of cloud services provided by autonomous cloud providers. In this paper we describe a Service Development Life Cycle for hybrid cloud environments and a prototype system designed to support this life cycle

    Reconfigurable SCA Applications with the FraSCAti Platform

    Get PDF
    CORE A. Acceptance rate: 18% (35/189).International audienceThe Service Component Architecture (SCA) is a technology agnostic standard for developing and deploying distributed service-oriented applications. However, SCA does not define standard means for runtime manageability (including introspection and reconfiguration) of SOA applications and of their supporting environment. This paper presents the FraSCAti platform, which brings runtime management features to SCA, and discusses key principles in its design: the adoption of an extended SCA component model for the implementation of SOA applications and of the FraSCAti platform itself; the use of component-based interception techniques for dynamically weaving non-functional services such as transaction management with components. The paper presents micro-benchmarks that show that runtime manageability in the FraSCAti platform is achieved without hindering its performance relative to the de facto reference SCA implementation, Apache's Tuscany

    A Reflective Platform for Highly Adaptive Multi-Cloud Systems

    Get PDF
    International audienceCloud platforms are increasingly used for hosting a broad diversity of services from traditional e-commerce applications to interactive web-based IDEs. However, we observe that the prolif- eration of offers by Cloud vendors raises several challenges. Developers will not only have to deploy applications for a specific Cloud, but will also have to consider migrating services from one cloud to another, and to manage applications spanning multiple Clouds. In this paper, we therefore report on a first experiment we conducted to build a multi-Cloud system on top of thirteen existing IaaS/PaaS. From this experiment, we advocate for two dimensions of adaptability - design and execution time - that applications for such systems require to exhibit. Finally, we propose a roadmap for future multi-Cloud systems

    Specification of the CHOReOS IDRE (D5.2)

    Get PDF
    This deliverable focuses on the design of the CHOReOS Integrated Development and Runtime Environment, aka CHOReOS IDRE, based on the supporting solutions developed within WP2, WP3 and WP4 during CHOReOS' 1st year. The document provides an overall description of the IDRE components, their respective functionalities and the integration dependencies between them, thereby defining the integration points between the components developed in WP2-3-4

    Microservice Transition and its Granularity Problem: A Systematic Mapping Study

    Get PDF
    Microservices have gained wide recognition and acceptance in software industries as an emerging architectural style for autonomic, scalable, and more reliable computing. The transition to microservices has been highly motivated by the need for better alignment of technical design decisions with improving value potentials of architectures. Despite microservices' popularity, research still lacks disciplined understanding of transition and consensus on the principles and activities underlying "micro-ing" architectures. In this paper, we report on a systematic mapping study that consolidates various views, approaches and activities that commonly assist in the transition to microservices. The study aims to provide a better understanding of the transition; it also contributes a working definition of the transition and technical activities underlying it. We term the transition and technical activities leading to microservice architectures as microservitization. We then shed light on a fundamental problem of microservitization: microservice granularity and reasoning about its adaptation as first-class entities. This study reviews state-of-the-art and -practice related to reasoning about microservice granularity; it reviews modelling approaches, aspects considered, guidelines and processes used to reason about microservice granularity. This study identifies opportunities for future research and development related to reasoning about microservice granularity.Comment: 36 pages including references, 6 figures, and 3 table
    • 

    corecore