3,130 research outputs found

    Wrist-worn gesture sensing with wearable intelligence

    Get PDF
    This paper presents an innovative wrist-worn device with machine learning capabilities and a wearable pressure sensor array. The device is used for monitoring different hand gestures by tracking tendon movements around the wrist. Thus, an array of PDMS-encapsulated capacitive pressure sensors is attached to the user to capture wrist movement. The sensors are embedded on a flexible substrate and their readout requires a reliable approach for measuring small changes in capacitance. This challenge was addressed by measuring the capacitance via the switched capacitor method. The values were processed using a programme on LabVIEW to visually reconstruct the gestures on a computer. Additionally, to overcome limitations of tendon’s uncertainty when the wristband is re-worn, or the user is changed, a calibration step based on the Support Vector Machine (SVM) learning technique is implemented. Sequential Minimal Optimization (SMO) algorithm is also applied in the system to generate SVM classifiers efficiently in real-time. The working principle and the performance of the SVM algorithms demonstrate through experiments. Three discriminated gestures have been clearly separated by SVM hyperplane and correctly classified with high accuracy (>90%) during real-time gesture recognition

    Unobtrusive and pervasive video-based eye-gaze tracking

    Get PDF
    Eye-gaze tracking has long been considered a desktop technology that finds its use inside the traditional office setting, where the operating conditions may be controlled. Nonetheless, recent advancements in mobile technology and a growing interest in capturing natural human behaviour have motivated an emerging interest in tracking eye movements within unconstrained real-life conditions, referred to as pervasive eye-gaze tracking. This critical review focuses on emerging passive and unobtrusive video-based eye-gaze tracking methods in recent literature, with the aim to identify different research avenues that are being followed in response to the challenges of pervasive eye-gaze tracking. Different eye-gaze tracking approaches are discussed in order to bring out their strengths and weaknesses, and to identify any limitations, within the context of pervasive eye-gaze tracking, that have yet to be considered by the computer vision community.peer-reviewe

    Towards sociable virtual humans : multimodal recognition of human input and behavior

    Get PDF
    One of the biggest obstacles for constructing effective sociable virtual humans lies in the failure of machines to recognize the desires, feelings and intentions of the human user. Virtual humans lack the ability to fully understand and decode the communication signals human users emit when communicating with each other. This article describes our research in overcoming this problem by developing senses for the virtual humans which enables them to hear and understand human speech, localize the human user in front of the display system, recognize hand postures and to recognize the emotional state of the human user by classifying facial expression. We report on the methods needed to perform these tasks in real-time and conclude with an outlook on promising research issues of the future

    Safe navigation and human-robot interaction in assistant robotic applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Robots learn to behave: improving human-robot collaboration in flexible manufacturing applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    An inclusive survey of contactless wireless sensing: a technology used for remotely monitoring vital signs has the potential to combating COVID-19

    Get PDF
    With the Coronavirus pandemic showing no signs of abating, companies and governments around the world are spending millions of dollars to develop contactless sensor technologies that minimize the need for physical interactions between the patient and healthcare providers. As a result, healthcare research studies are rapidly progressing towards discovering innovative contactless technologies, especially for infants and elderly people who are suffering from chronic diseases that require continuous, real-time control, and monitoring. The fusion between sensing technology and wireless communication has emerged as a strong research candidate choice because wearing sensor devices is not desirable by patients as they cause anxiety and discomfort. Furthermore, physical contact exacerbates the spread of contagious diseases which may lead to catastrophic consequences. For this reason, research has gone towards sensor-less or contactless technology, through sending wireless signals, then analyzing and processing the reflected signals using special techniques such as frequency modulated continuous wave (FMCW) or channel state information (CSI). Therefore, it becomes easy to monitor and measure the subject’s vital signs remotely without physical contact or asking them to wear sensor devices. In this paper, we overview and explore state-of-the-art research in the field of contactless sensor technology in medicine, where we explain, summarize, and classify a plethora of contactless sensor technologies and techniques with the highest impact on contactless healthcare. Moreover, we overview the enabling hardware technologies as well as discuss the main challenges faced by these systems.This work is funded by the scientific and technological research council of Turkey (TÜBITAK) under grand 119E39

    Intelligent strategies for mobile robotics in laboratory automation

    Get PDF
    In this thesis a new intelligent framework is presented for the mobile robots in laboratory automation, which includes: a new multi-floor indoor navigation method is presented and an intelligent multi-floor path planning is proposed; a new signal filtering method is presented for the robots to forecast their indoor coordinates; a new human feature based strategy is proposed for the robot-human smart collision avoidance; a new robot power forecasting method is proposed to decide a distributed transportation task; a new blind approach is presented for the arm manipulations for the robots

    Comparison of Human Pilot (Remote) Control Systems in Multirotor Unmanned Aerial Vehicle Navigation

    Get PDF
    This paper concerns about the human pilot or remote control system in UAV navigation. Demands for Unmanned Aerial Vehicle (UAV) are increasing tremendously in aviation industry and research area. UAV is a flying machine that can fly with no pilot onboard and can be controlled by ground-based operators. In this paper, a comparison was made between different proposed remote control systems and devices to navigate multirotor UAV, like hand-controllers, gestures and body postures techniques, and vision-based techniques. The overall reviews discussed in this paper have been studied in various research sources related to UAV and its navigation system. Every method has its pros and cons depends on the situation. At the end of the study, those methods will be analyzed and the best method will be chosen in term of accuracy and efficiency
    • …
    corecore