28,035 research outputs found

    Effect of overmolding process on the integrity of electronic circuits

    Get PDF
    Traditional injection molding processes have been widely used in the plastic processing industry. It is the major processing technique for converting thermoplastic polymers into complicated 3D parts with the aid of heat and pressure. Next generation of electronic circuits used in different application areas such as automotive, home appliances and medical devices will embed various electronic functionalities in plastic products. In this study, over-molding injection molding (OVM) of electronic components will be examined to insert novel performance in polymer materials. This low-cost manufacturing process offers potential benefits such as, reduction in processing time, higher freedom of design and less energy used when compared to the conventional injection molding method. This paper aims to evaluate the performance of this process and propose a series of alternative solutions to optimize the adhesion between and integration of electronics and engineering plastics. A number of methods are used to optimize the process so that the electronic circuits are not damaged during the over-molding, moreover to test the reliability of the system in order to control the continuity of connections between the electronic circuit foils and the electronic components after the OVM process. Correspondingly, we have performed specific tests for this purpose varying in some conditions: the type of injected plastic used, over-molding parameters (temperature, pressure and injection time), electronic circuit design, type of assembled electronic components, type of foils used and the effect of using underfill material below the electronic component. From these tests, first conclusions were made. We have also studied adhesion between the foil and the over-molding material. In this case, various types of engineering plastics have been tested; polypropylene (PP), 30% weight percentage glass,fiber filled polypropylene (GF-PP), Polyamide-6 (PA6) and 50% weight percentage glass fiber filled polyamide-6 (GF-PA6). It was proved that throughout the wide range of tested materials, (PA6) over-molded samples showed a better adhesion on the copper-polyimide foils than the rest. These plastics were over-molded on two types of polyimide (PP/Copper (Cu) tracks foils with and without an adhesive layer between PI and Cu. It was obviously clear that the foils with on adhesive layer between PI and Cu had more delamination in the Cu tracks than the foils without an adhesive layer. Furthermore, it was shown that the presence of an underfill material has on effect on the system as the foils that had an underfill material below their components successfully had a better connection than the folis without an underfill material. Finally, experiments were executed using the two probe method as an electrical measurement and microscope investigation as the visual inspection

    Roadmap on semiconductor-cell biointerfaces.

    Get PDF
    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world

    Programmable photonics : an opportunity for an accessible large-volume PIC ecosystem

    Get PDF
    We look at the opportunities presented by the new concepts of generic programmable photonic integrated circuits (PIC) to deploy photonics on a larger scale. Programmable PICs consist of waveguide meshes of tunable couplers and phase shifters that can be reconfigured in software to define diverse functions and arbitrary connectivity between the input and output ports. Off-the-shelf programmable PICs can dramatically shorten the development time and deployment costs of new photonic products, as they bypass the design-fabrication cycle of a custom PIC. These chips, which actually consist of an entire technology stack of photonics, electronics packaging and software, can potentially be manufactured cheaper and in larger volumes than application-specific PICs. We look into the technology requirements of these generic programmable PICs and discuss the economy of scale. Finally, we make a qualitative analysis of the possible application spaces where generic programmable PICs can play an enabling role, especially to companies who do not have an in-depth background in PIC technology

    IC-integrated flexible shear-stress sensor skin

    Get PDF
    This paper reports the successful development of the first IC-integrated flexible MEMS shear-stress sensor skin. The sensor skin is 1 cm wide, 2 cm long, and 70 /spl mu/m thick. It contains 16 shear-stress sensors, which are arranged in a 1-D array, with on-skin sensor bias, signal-conditioning, and multiplexing circuitry. We further demonstrated the application of the sensor skin by packaging it on a semicylindrical aluminum block and testing it in a subsonic wind tunnel. In our experiment, the sensor skin has successfully identified both the leading-edge flow separation and stagnation points with the on-skin circuitry. The integration of IC with MEMS sensor skin has significantly simplified implementation procedures and improved system reliability
    • …
    corecore